机器学习原理
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 源码:https://www.wenjiangs.com/wp-content/uploads/2022/12/ML_Notes.zip
面试高频题1: 题目:了解决策树吗 答案解析: 决策树是一种机器学习的方法。决策树的生成算法有ID3, C4.5和C5.0等。决策树是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。 决策树的构造过程: 决策树的构造过程一般分为3个部分,分别是特征选择、决策树生产和决策树裁剪。 (1)特征选择: 特征选择表示从众多的特征中选择一个
面试高频题11: 题目:L1、L2的原理?两者区别? 答案解析: 原理: L1正则是基于L1范数和项,即参数的绝对值和参数的积项;L2正则是基于L2范数,即在目标函数后面加上参数的平方和与参数的积项。 区别: 1.鲁棒性:L1对异常点不敏感,L2对异常点有放大效果。 2.稳定性:对于新数据的调整,L1变动很大,L2整体变动不大。 答案解析 数据分析只需要简单知道原理和区别就行,公式推导不需要,面试
#快手# #暑期实习# #二面# #推荐算法# #推荐算法面经# 时间2024年4月3日 15:00 总计65min 1.自我介绍 2.本科推荐系统项目(参考一面面经) 3.论文 4. 讲一讲CTR预估和序列推荐模型 - DIN DIEN SIM Caser GRU4Rec SLiRec CLSR MIND.... 5. 了解矩阵分解吗 - MF、LFM 6.LSTM模型介绍,几个门的作用 7.t
全程1h左右,面试官比较好,聊天式 科研20min sigmoid的l1、l2正则化 gbtd,xgbboost区别 xgbboost有哪些参数可以调(回答树的个数和每个树的节点数) 聚类可以分为哪几种 手撕算法:最大岛屿数(没让debug完,做完讲思路,个人没用传统的dfs,用自己想出来的算法做的 一组数据如何求前k个最大数?复杂度 反问 #你收到了团子的OC了吗# #美团信息集散地# #我的实
本文向大家介绍机器学习:知道哪些传统机器学习模型相关面试题,主要包含被问及机器学习:知道哪些传统机器学习模型时的应答技巧和注意事项,需要的朋友参考一下 参考回答: 常见的机器学习算法: 1).回归算法:回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法。回归算法是统计机器学习的利器。 常见的回归算法包括:最小二乘法(Ordinary Least Square),逐步式回归(Stepwis
本文为周志华《机器学习》的学习笔记,记录了本人在学习这本书的过程中的理解思路以及一些有助于消化书内容的拓展知识,笔记中参考了许多网上的大牛经典博客以及李航《统计学习》的内容,向前辈们和知识致敬!
本文向大家介绍Python语言描述机器学习之Logistic回归算法,包括了Python语言描述机器学习之Logistic回归算法的使用技巧和注意事项,需要的朋友参考一下 本文介绍机器学习中的Logistic回归算法,我们使用这个算法来给数据进行分类。Logistic回归算法同样是需要通过样本空间学习的监督学习算法,并且适用于数值型和标称型数据,例如,我们需要根据输入数据的特征值(数值型)的大小来
本文向大家介绍Python机器学习之决策树算法实例详解,包括了Python机器学习之决策树算法实例详解的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了Python机器学习之决策树算法。分享给大家供大家参考,具体如下: 决策树学习是应用最广泛的归纳推理算法之一,是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树。决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,
[toc] 百度 机器学习算法工程师 凉经 投递 2022.07.25 牛客投递,后面牛客上内推了,发了一个内推确认链接,就等于是官网内推投递吧应该 一面通知 2022.07.29 通知面试,直接发的2022.08.02 晚上 20 : 00一面 一面 2022.08.02 面试时长:60 min 面试平台: 如流(百度自家的) 面试过程,分为3部分 项目 介绍项目,问了两个项目 在问项目过程中,
全程25分钟 手撕:lc5 只需要输出长度,中心扩展秒了 项目 Transformer中缩放点击注意力为什么要除以根号下dk(这个问题被问到好多次了,给出了原文解释) 为什么值是根号下dk而不是dk,dk的2/3次方等?(这里李沐的动手学深度学习给出了一个解释:假设查询和键的所有元素都是独立的随机变量,并且都满足零均值和单位方差,那么两个向量的点积的均值为0,方差为d。为确保无论向量长度如何,点积
做了海笔没ak也约面了 第一个大厂还是很紧张很紧张的 面试官提前了四十分钟进会议室。。。 一上来自我介绍(ppt)面试官当时表现得有点异常惊讶hh 然后介绍完什么都没说直接编辑距离 当时脑海中一直想直接做题就是kpi 然后出了两个bug,思路也不说的不太好 面试官提醒之后才搞完 再接着就是简历深挖,挖到地心了 很多自己没想过的被问了 然后问各种 bn、dropout、不过都是基础的机器学习的东西,
一面 (1)死锁的两种原因 (2)模型量化的方式,我说kv cache和参数量化,面试官问量化是怎么提高推理加速的效率,我答不太上来 (3)transformer自注意力层的时间复杂度 (4)stack和dequeue的区别 (5)算法题:有效ip地址 一面面试官是我遇到最善良的面试官,他对跨专业同学的包容性大到难以置信。也很感谢他的宽容和鼓励。最后反问环节,他跟我举了jieba分词的例子,鼓励我
1.自我介绍+项目 2.卷积的特征图计算((w+2p-k)/s+1) 3.VGG16的结构和思想?(5×5卷积核等价于2个3×3,7×7等价于3个3×3) 4.UNet结构和思想?下采样+上采样 5.Deformable Conv的做法(卷积+offset预测) 6.SVM,K means,GBDT等传统机器学习算法的一些问题:hard margin如何做的+K means流程 7.蒸馏是什么,温