我是机器学习算法的新手。我正在学习基本算法,如回归、分类、聚类、序列建模、在线算法。互联网上的所有文章都展示了如何将这些算法用于特定数据。没有关于在正式生产环境中部署这些算法的文章。所以我的问题是 1) 如何在生产环境中部署机器学习算法? 2)机器学习教程中遵循的典型方法是使用一些训练数据构建模型,并将其用于测试数据。但是,是否建议在生产环境中使用这种模型?传入的数据可能会不断变化,因此模型将无效
上来介绍项目相关,然后提问 1、有做过微调相关的吗?(答sd和lora,解释了底层架构和原理) 2、用过哪些网络?(常规问题) 3、正则化的方法?(常规问题) 4、常用的损失函数?(常规问题) 5、目标检测算法如何设计?(yolo相关的原理没准备好) 6、有部署过相关大模型的经验吗?(有过但不熟练) 7、有业务经验吗?(基本没有) 8、python用的怎么样?(还行,基本的算法都能写,但主要C/C
前言 大家好,我是鬼仔。今天带来《机器学习高频面试题详解》专栏的第一章监督学习的第一节:感知机,接下来鬼仔将每周更新1~2篇文章,希望每篇文章能够将一个知识点讲透、讲深,也希望读者能从鬼仔的文章中有所收获。 欢迎大家订阅该专栏,可以先看看专栏介绍。如果对文章内容或者排版有任何意见,可以直接在讨论区提出来,鬼仔一定虚心接受! 一、原理 1. 感知机模型 感知机模型是一个最经典古老的分类方法,现在基本
本来三十分钟的面试,我直接十四分钟完事,面试官不问具体项目做了啥,就从你做的项目里面挖知识点,基本问的都是纯八股,很基础的问题,但是我太菜了(我答的很不好,可能还没到问项目呢😅),面试官人很好,你说不会,他就说那咱换一个,反问之后还给我提建议来着。 总结,体验还可以,问题在自己太菜😂
本文向大家介绍机器学习之KNN算法原理及Python实现方法详解,包括了机器学习之KNN算法原理及Python实现方法详解的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了机器学习之KNN算法原理及Python实现方法。分享给大家供大家参考,具体如下: 文中代码出自《机器学习实战》CH02,可参考本站: 机器学习实战 (Peter Harrington著) 中文版 机器学习实战 (Peter
7.27一面 面试官人很好,问到我不会的就换别的问了,全程一个小时。 先自我介绍,再根据自我介绍里的内容进行提问,关于研究方向的问题,想了解我的研究方向大致是怎样的,让我大概就研究任务和主要方法还有数据集方面做介绍。 关于语言情况,我说我主要是用Python,她说他们C++用得多,我说本科用过,但是研究生期间没用了。她说他们Python只是拿来实验一下算法,主要还是用C++做底层的开发和改进优化。
百度2024秋招机器学习一面面经 岗位:机器学习/数据挖掘/NLP-T联合 部门:百度地图 地点:北京 一面 自我介绍 对项目和实习的大概询问,没有去深挖,只是对一些问题进行询问 询问对大模型的了解,讲了 RLHF 的原理 RLHF是一种新的训练范式,通过使用强化学习方式根据人类反馈来优化语言模型。一共包括三个步骤: 预训练一个语言模型(LM) 收集数据并训练奖励模型 (Reward Model,
自我介绍到一半打断了,直接问八股…… 关注的点和一面一样有点奇怪,特别喜欢问我记不记得base模型的d_models和seq_len以及各种各样的参数…… 项目里一直纠结我训的1.5B模型,我跟她说我还训了3.8B和72B版本,没让我讲下去,说1.5B已经很大,可以满足我们项目需求了…… 代码题做了lc. 236的变体最近公共子节点,和lc. 15三数之和,手撕的没什么问题,但这三数之和在一面已经
前段时间投算法实习一直没回应,当时觉得连简历都过不了很焦虑,还发了一条动态挺多人回我的。后来陆陆续续也有企业找我笔试,目前做的两个都过了。周中收到了百度的面试通知。 人生中第一次求职面试,不出意外地凉了。细问了项目,有一个强化学习相关的项目面试官相关知识应该挺熟悉,但是我主要做的是数据分析方面的工作,所以对核心算法的实现回答得牛头不对马嘴另一个项目浅问了一下。 然后就手搓代码了。一道搓出来了另一道
本文向大家介绍机器学习中有哪些不同的梯度下降算法?,包括了机器学习中有哪些不同的梯度下降算法?的使用技巧和注意事项,需要的朋友参考一下 使用梯度下降的背后思想是在各种机器学习算法中将损失降至最低。从数学上讲,可以获得函数的局部最小值。 为了实现这一点,定义了一组参数,并且需要将它们最小化。给参数分配系数后,就可以计算误差或损失。接下来,权重被更新以确保误差最小化。除了参数,弱学习者可以是用户,例如
本文向大家介绍哪些机器学习算法不需要做归一化处理?相关面试题,主要包含被问及哪些机器学习算法不需要做归一化处理?时的应答技巧和注意事项,需要的朋友参考一下 概率模型不需要归一化,因为他们不关心变量的值,而是关心变量的分布和变量之间的条件概率,如决策树、RF。而像Adaboost、GBDT、SVM、LR、KNN、KMeans之类的最优化问题就需要归一化
一面HR面; 自我介绍,聊完项目后开始拷打: 1、了解python吗?python的继承和封装? 2、B树和B+树的区别? 3、数据学习率过大会出现什么情况?过拟合的处理方法。 4、讲一下L1和L2正则化? 5、数据集过于庞大怎么设计算法思路? 6、强化学习PPO? 7、transfomer讲一下 …… 其他的忘了哈哈哈,约了二面但没说时间#牛客解忧铺##算法#
支持向量机(SVM)是一类按监督学习方式对数据进行二元分类的广义线性分类器,其决策边界是对学习样本求解的最大边距超平面,可以将问题化为一个求解凸二次规划的问题。与逻辑回归和神经网络相比,支持向量机,在学习复杂的非线性方程时提供了一种更为清晰,更加强大的方式。
本文向大家介绍关于机器学习中的强化学习,什么是Q学习?,包括了关于机器学习中的强化学习,什么是Q学习?的使用技巧和注意事项,需要的朋友参考一下 Q学习是一种强化学习算法,其中包含一个“代理”,它采取达到最佳解决方案所需的行动。 强化学习是“半监督”机器学习算法的一部分。将输入数据集提供给强化学习算法时,它会从此类数据集学习,否则会从其经验和环境中学习。 当“强化代理人”执行某项操作时,将根据其是否
主要内容:Python,NumPy,Pandas ,Scikit-Learn常言道“工欲善其事,必先利其器”,在学习机器学习算法之前,我们需要做一些准备工作,首先要检查自己的知识体系是否完备,其次是要搭建机器学习的开发环境。本教程以讲解算法为主,不会涉及太复杂的应用案例,在讲解过程中会穿插一些示例代码,这样不仅能够帮助你理解算法原理,同时又能让你体会到算法的应用过程。 机器学习的研究方向有很多,比如图像识别、语音识别、自然语言处理、以及深度学习等,因此它是一门较为复杂的技