3.12 大概面了50分钟,大部分在深挖项目,实现细节问得比较深。 1.自我介绍,把简历内容快速过了一遍,面试官还夸了一句我做过的东西蛮充实 2.针对实习项目挖呀挖呀挖,这部分耗时最久,项目实现细节问得很详细 3.介绍一下Bert 4.GPT和Bert的区别 5.介绍一下Roberta,它的改进点在哪 6.Transformer和LSTM的结构与原理 7.介绍RLHF技术 8.介绍注意力机制 9.
主要是问一些 python 基础和实习内容吧 面试时长:35min 面试内容: * with 做什么的,有自己实现过吗 * 删除列表的空元素有哪些方法 * 如何实现单例模式 * GIL 的目的是? * 不可变元素和可变元素的区别 * Flask 用过吗 * C++和 Python 哪个用得多 * 手撕:两个进程顺序打印 0-100 * 实习经历深挖了十分钟
OPPO 计算机视觉算法开发工程师(camera方向) 一面(8.9): 着重介绍一下就是说这个项目里面你这段实习经历里面他有什么需要解决的一个任务,然后遇到了些什么难点,你是怎么解决这些问题的? 怎么提升模型服务CPU和GPU的利用率的? 神经网络是否会出现预测错误的情况,如何改善? 问了一个项目中的损失函数的目的是什么 介绍一下知识蒸馏,不同的蒸馏方法的优劣势 手撕:二叉树按层输出节点(层序遍
自我介绍 问项目 容器迭代器失效问题 智能指针 share_from_this(寄,没听过) C++的锁 算法题:力扣56 学校成绩 在学校做过什么有成就感的事情吗 反问: 部门:做搜索引擎,基本全是用C++ 几面:3-4#得物面经#
10-8 面试官懂的太多了,秋招以来第一次面试被问麻了。 手撕 简单dp题,到右下角的最短路径 面试官说可以把边界条件拿出来做,这样会更清晰点 Pytorch DDP了解过吗 不了解 CV的发展路径 从AlexNet开始说,因为想不起来具体改进,就总结了说是各种架构和激活函数的改进 NLP的发展路径 RNN-》LSTM-》Transformer 不清楚是不是这个发展 RNN和Transformer
记录一下菜鸡被狂虐的经历吧 一面:研究院中的某个产品线 1.自我介绍 2.对哪个算法模型比较熟悉,介绍一下(说了xgboost) 3.xgboost与gbdt的区别 4.运用xgboost前是否需要进行归一化处理,xgboost中如何预防过拟合,如何在训练模型前预防过拟合 5.有没有用过深度学习模型,对哪些比较熟悉(我的方向是机器学习,就说了个cnn) 6.cnn各层的作用(属实是不记得了),为什
#小天才# 面试前通知时间大约半小时,实际面了将近一小时,但最后还是挂了。面试官比较侧重于问项目经历,而且表明我进面试是因为看重我的专业(通信本科+生物医学工程硕士)和某个项目经历比较对口,不过我在面试前准备的方向有点偏了,我当时提取准备的都是深度学习以及大模型方面的多模态知识,而小天才的多模态指的其实是智能穿戴设备上采集到的各种生理信号数据,主要结合的还是机器学习算法,这方面的提问我也没有很好答
流程是:自我介绍-项目询问-企业观感-反问 整体感觉还可以,全是围着简历项目问的,其他问题基本没有。 希望进二面!
🕒岗位/面试时间 1小时30分钟 1、自我介绍 2、讲一下kaggle金 方案,围绕着一个比赛扣细节 3、围绕天池/miccai workshop比赛展开 3、Gem代替global avg pool动机,Gem公式,代码实现 4、BN公式、其中可学习参数的意义 5、手撕Focal Loss 6、手撕Crop(提供一个中心点,和裁剪的宽高,要防止越界等异常情况) 7、反问 已发下一面时间
联想:2022 秋招 算法工程师 面试 一面 项目 是否了解 GDBT 等推荐算法 分类问题的交叉熵、是否可以用MSE 不可以。主要原因如下: 物理意义上,MSE 衡量的是几何空间的欧氏距离,而分类问题中每个类别的标签是离散的 和 ,本身不具备几何空间的意义; 信息学中,交叉熵衡量的是两个分布之间的差异,可用于衡量模型预测的概率分布和真实标签的类别分布是否相似。 计算上,分类模型输出的概率一般会经
8.18 测评 9.6 一面 项目1介绍 逻辑回归简介 极大似然法简介 反问 KPI面...面完了面试官说他们是做加密的,不懂为什么让我面... #小米面试#
以为一面挂了,没想到还是进二面了 无手撕,大概40min,主问项目,图形学和cpp 总体表现自我评价比一面好很多,(一面教训:会的东西如果不能清楚的表达出来就必须认为是没有掌握) ---图形学的部分总体表现还可以 对过程中的知识点做一个简单总结,可能有部分遗漏(并非面试原问题,但囊括了下面的内容): 前向渲染和延迟渲染的对比和各自优劣 PBR流程和理论 阴影贴图技术(级联,立方体阴影贴图的优化和实
面试官很帅人很nice,但是本人巨菜估计已凉 大概持续30min 让我自己讲一个项目,扯了一个运筹相关的毕设(特别坑,自己都没完全整明白),面试官不是做运筹的,但是也讨论了下三要素(目标、变量、约束),感觉他没听太懂目标... 然后就问了机器学习的项目,我选的课程项目比较水,一些简单问题有准备但背的不熟,后来被面试官发现在念稿,要求视线注视屏幕就开始口齿不清,一定要自己多读多背八股!! 一些基础问
发面经攒人品,用快手一个部门的面经求另一个部门的offer 一面 研究方向,论文的问题 深度学习相关 ReLU ReLU,LeakyReLU ReLU表达式,优缺点,为什么用,为什么不用 ReLU激活函数是如何解决梯度消失和梯度爆炸问题的? 什么是梯度消失和梯度爆炸?什么单元更容易出现梯度消失梯度爆炸的问题?ReLU如何解决梯度消失问题 ReLU之前常用的激活函数 Sigmoid 写一下sigmo
行测40min 阅读理解,数量,图形,性格各10min 每道题限制60s左右 感觉笔试应该不止行测吧,是不是会有技术笔试,有佬了解吗,另外算法系统工程师是干嘛的,我不会又是炮灰吧