本人中九统计学专业 3.15投的蚂蚁信贷事业群的算法,3.21一面,之后一直没消息然后4.13下午突然打电话来开始二面,我问面试官怎么这么久他嘿嘿一笑说由于部门人事变动耽误了一些时间😅😅 二面问的问题也是很无奈,自我介绍刚说完实习经历就不让我继续说了(我的项目是风控算法相关的但是也没让我说),然后就开始问实习,之后问了我位运算(不会),然后又问了一个三个杯子倒水的问题,然后是场景题,让我现场估
Hash 算法 定义 Hash (哈希或散列)算法是信息技术领域非常基础也非常重要的技术。它能任意长度的二进制值(明文)映射为较短的固定长度的二进制值(Hash 值),并且不同的明文很难映射为相同的 Hash 值。 例如计算一段话“hello blockchain world, this is yeasy@github”的 MD5 hash 值为 89242549883a2ef85dc81b90f
后缀树 1.1、后缀树的定义 后缀树(Suffix tree)是一种数据结构,能快速解决很多关于字符串的问题。后缀树的概念最早由Weiner 于1973年提出,既而由McCreight 在1976年和Ukkonen在1992年和1995年加以改进完善。 后缀,顾名思义,就是后面尾巴的意思。比如说给定一长度为n的字符串S=S1S2..Si..Sn,和整数i,1 <= i <= n,子串SiSi+1…
推荐系统并不是新鲜的事物,在很久之前就存在,但是推荐系统真正进入人们的视野,并且作为一个重要的模块存在于各个互联网公司,还是近几年的事情。 随着互联网的深入发展,越来越多的信息在互联网上传播,产生了严重的信息过载。如果不采用一定的手段,用户很难从如此多的信息流中找到对自己有价值的信息。 解决信息过载有几种手段:一种是搜索,当用户有了明确的信息需求意图后,将意图转换为几个简短的词或者短语的组合(即q
为了减少I/O次数,FP Tree算法引入了一些数据结构来临时存储数据。这个数据结构包括三部分,如下图所示: 第一部分是一个项头表。里面记录了所有的1项频繁集出现的次数,按照次数降序排列。比如上图中B在所有10组数据中出现了8次,因此排在第一位,这部分好理解。第二部分是FP Tree,它将我们的原始数据集映射到了内存中的一颗FP树,这个FP树比较难理解,它是怎么建立的呢?这个我们后
1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法。AP算法的基本思想是将全部数据点都当作潜在的聚类中心(称之为exemplar),然后数据点两两之间连线构成一个网络(相似度矩阵),再通过网络中各条边的消息(responsibility和availability)传递计算出各样本的聚类
DEFLATE 是同时使用了哈夫曼编码(Huffman Coding)与 LZ77 算法的一个无损数据压缩算法,是一种压缩数据流的算法。任何需要流式压缩的地方都可以用。目前 zip 压缩文件默认使用的就是该算法。 关于算法的原理,以及 哈夫曼编码(Huffman Coding)与 LZ77 算法,感兴趣的读者可以查询相关资料,这里推荐 GZIP压缩原理分析——第五章 Deflate算法详解 序列文
该包实现了四种基本排序算法:插入排序、归并排序、堆排序和快速排序。 但是这四种排序方法是不公开的,它们只被用于sort包内部使用。所以在对数据集合排序时不必考虑应当选择哪一种排序方法,只要实现了sort.Interface定义的三个方法:获取数据集合长度的Len()方法、比较两个元素大小的Less()方法和交换两个元素位置的Swap()方法,就可以顺利对数据集合进行排序。sort包会根据实际数据自
轮询算法 类型:ROUND_ROBIN 可配置属性:无 随机访问算法 类型:RANDOM 可配置属性:无
问题 你想计算出 Fibonacci 数列中的数值 N ,但需迅速地算出结果。 解决方案 下面的方案(仍有需改进的地方)最初在 Robin Houston 的博客上被提出来。 这里给出一些关于该算法和改进方法的链接: http://bosker.wordpress.com/2011/04/29/the-worst-algorithm-in-the-world/ http://www.math.ru
10.5.1 算法复杂度 为了回答上述问题,首先要明确如何衡量算法的好坏。以搜索问题为例,线性搜索算法 直接了当,易设计易实现,这算不算“好”?而二分搜索算法虽然设计实现稍难一些,但因 无需检查每一个数据而大大提高了搜索效率,这又算不算“好”? 在解决数学问题时,不论是证明定理还是计算表达式,只要证明过程正确、计算结果精 确,问题就可以认为成功地解决了,即正确性、精确性是评价数学解法好坏的标准。而
Index 基本遵从《统计学习方法》一书中的符号表示。 除特别说明,默认w为行向量,x为列向量,以避免在wx 中使用转置符号;但有些公式为了更清晰区分向量与标量,依然会使用^T的上标,注意区分。 输入实例x的特征向量记为: 注意:x_i 和 x^(i) 含义不同,前者表示训练集中第 i 个实例,后者表示特征向量中的第 i 个分量;因此,通常记训练集为: 特征向量用小n表示维数,训练集用大N表示个数
一、我们先回顾下SVM问题。 A、线性可分问题 1、SVM基本原理: SVM使用一种非线性映射,把原训练数据映射到较高的维。在新的维上,搜索最佳分离超平面,两个类的数据总可以被超平面分开。 2、问题的提出: 3、如何选取最优的划分直线f(x)呢? 4、求解:凸二次规划 建立拉格朗日函数: 求偏导数: B、线性不可分问题 1、核函数 如下图:横轴上端点a和b之间红色部分里的所有点定为正类,两边的黑色
正如主要章节中所解释的,Objective-C指针是一个地址,它是一个数值。 因此,您可以像对数值一样对指针执行算术运算。 可以在指针上使用四个算术运算符:++, - ,+和 - 要理解指针运算,让我们考虑ptr是一个整数指针,它指向地址1000.假设32位整数,让我们对指针执行以下算术运算 - ptr++ 现在,在上述操作之后, ptr将指向位置1004,因为每次ptr递增时,它将指向下一个整
大家好,今天我们开始学习一个新专题 — 算法(Algorithm)。关于算法,我们日常开发中有很多应用,介绍算法的书籍也有很多,其中涉及到的知识点和信息量都很庞大,这个专题我们重点针对基于 Java 语言实现的算法设计和应用进行讲解,读者也可以自己将其扩展到其他语言的实现。