5.8 ORB(定向快速和旋转简要)
目标
在本章中,
- 我们将了解ORB的基础知识
理论
作为OpenCV的狂热者,关于ORB的最重要的事情是它来自“ OpenCV Labs”。该算法由Ethan Rublee,Vincent Rabaud,Kurt Konolige和Gary R. Bradski在其论文《ORB:SIFT或SURF的有效替代方案》中提出。2011年,正如标题所述,它是计算中SIFT和SURF的良好替代方案成本,匹配性能以及主要是专利。是的,SIFT和SURF已获得专利,你应该为其使用付费。但是ORB不是!!!
ORB基本上是FAST关键点检测器和Brief描述符的融合,并进行了许多修改以增强性能。首先,它使用FAST查找关键点,然后应用Harris角测度在其中找到前N个点。它还使用金字塔生成多尺度特征。但是一个问题是,FAST无法计算方向。那么旋转不变性呢?作者提出以下修改。
它计算角点位于中心的贴片的强度加权质心。从此角点到质心的矢量方向确定了方向。为了改善旋转不变性,使用x和y计算矩,它们应该在半径$r$的圆形区域中,其中$r$是斑块的大小。
现在,对于描述符,ORB使用Brief描述符。但是我们已经看到,BRIEF的旋转性能很差。因此,ORB所做的就是根据关键点的方向“引导” BRIEF。对于位置$(xi,y_i)$上n个二进制测试的任何特征集,定义一个$2×n$矩阵S,其中包含这些像素的坐标。然后使用面片的方向$θ$,找到其旋转矩阵并旋转$S$以获得转向(旋转)版本$Sθ$。
ORB将角度离散化为$\frac{2π}{30}$(12度)的增量,并构造了预先计算的Brief模式的查找表。只要关键点方向$θ$在各个视图中一致,就将使用正确的点集$S_θ$来计算其描述符。
BRIEF具有一个重要的特性,即每个位特征具有较大的方差,且均值接近0.5。但是,一旦沿关键点方向定向,它就会失去此属性,变得更加分散。高方差使功能更具区分性,因为它对输入的响应不同。另一个理想的特性是使测试不相关,因为从那时起每个测试都会对结果有所贡献。为了解决所有这些问题,ORB在所有可能的二进制测试中进行贪婪搜索,以找到方差高且均值接近0.5且不相关的测试。结果称为rBRIEF。
对于描述符匹配,使用了对传统LSH进行改进的多探针LSH。该论文说,ORB比SURF快得多,而SIFT和ORB描述符比SURF更好。在全景拼接等低功耗设备中,ORB是一个不错的选择。
OpenCV中的ORB
与往常一样,我们必须使用函数cv.ORB()或使用feature2d通用接口来创建ORB对象。它具有许多可选参数。最有用的是nFeatures,它表示要保留的最大特征数(默认为500),scoreType表示是对特征进行排名的Harris分数还是FAST分数(默认为Harris分数)等。另一个参数WTA_K决定点数产生定向的BRIEF描述符的每个元素。默认情况下为两个,即一次选择两个点。在这种情况下,为了匹配,将使用NORM_HAMMING距离。如果WTA_K为3或4,则需要3或4个点来生成Brief描述符,则匹配距离由NORM_HAMMING2定义。 下面是显示ORB用法的简单代码。
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('simple.jpg',0)
# 初始化ORB检测器
orb = cv.ORB_create()
# 用ORB寻找关键点
kp = orb.detect(img,None)
# 用ORB计算描述符
kp, des = orb.compute(img, kp)
# 仅绘制关键点的位置,而不绘制大小和方向
img2 = cv.drawKeypoints(img, kp, None, color=(0,255,0), flags=0)
plt.imshow(img2), plt.show()
查看以下结果:
ORB特征匹配,我们将在另一章中进行。
附加资源
- Ethan Rublee, Vincent Rabaud, Kurt Konolige, Gary R. Bradski: ORB: An efficient alternative to SIFT or SURF. ICCV 2011: 2564-2571.