Sequential模型接口
如果刚开始学习Sequential模型,请首先移步这里阅读文档
常用Sequential属性
model.layers
是添加到模型上的层的list
Sequential模型方法
compile
compile(self, optimizer, loss, metrics=[], sample_weight_mode=None)
编译用来配置模型的学习过程,其参数有
optimizer:字符串(预定义优化器名)或优化器对象,参考优化器
loss:字符串(预定义损失函数名)或目标函数,参考目标函数
metrics:列表,包含评估模型在训练和测试时的网络性能的指标,典型用法是
metrics=['accuracy']
sample_weight_mode:如果你需要按时间步为样本赋权(2D权矩阵),将该值设为“temporal”。默认为“None”,代表按样本赋权(1D权)。在下面
fit
函数的解释中有相关的参考内容。kwargs:使用TensorFlow作为后端请忽略该参数,若使用Theano作为后端,kwargs的值将会传递给 K.function
model = Sequential()
model.add(Dense(32, input_shape=(500,)))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
fit
fit(self, x, y, batch_size=32, nb_epoch=10, verbose=1, callbacks=[], validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None)
本函数将模型训练nb_epoch
轮,其参数有:
x:输入数据。如果模型只有一个输入,那么x的类型是numpy array,如果模型有多个输入,那么x的类型应当为list,list的元素是对应于各个输入的numpy array
y:标签,numpy array
batch_size:整数,指定进行梯度下降时每个batch包含的样本数。训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步。
nb_epoch:整数,训练的轮数,训练数据将会被遍历nb_epoch次。Keras中nb开头的变量均为"number of"的意思
verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录
callbacks:list,其中的元素是
keras.callbacks.Callback
的对象。这个list中的回调函数将会在训练过程中的适当时机被调用,参考回调函数validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。
validation_data:形式为(X,y)的tuple,是指定的验证集。此参数将覆盖validation_spilt。
shuffle:布尔值或字符串,一般为布尔值,表示是否在训练过程中随机打乱输入样本的顺序。若为字符串“batch”,则是用来处理HDF5数据的特殊情况,它将在batch内部将数据打乱。
class_weight:字典,将不同的类别映射为不同的权值,该参数用来在训练过程中调整损失函数(只能用于训练)
sample_weight:权值的numpy array,用于在训练时调整损失函数(仅用于训练)。可以传递一个1D的与样本等长的向量用于对样本进行1对1的加权,或者在面对时序数据时,传递一个的形式为(samples,sequence_length)的矩阵来为每个时间步上的样本赋不同的权。这种情况下请确定在编译模型时添加了
sample_weight_mode='temporal'
。
fit
函数返回一个History
的对象,其History.history
属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况
evaluate
evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None)
本函数按batch计算在某些输入数据上模型的误差,其参数有:
x:输入数据,与
fit
一样,是numpy array或numpy array的listy:标签,numpy array
batch_size:整数,含义同
fit
的同名参数verbose:含义同
fit
的同名参数,但只能取0或1sample_weight:numpy array,含义同
fit
的同名参数
本函数返回一个测试误差的标量值(如果模型没有其他评价指标),或一个标量的list(如果模型还有其他的评价指标)。model.metrics_names
将给出list中各个值的含义。
如果没有特殊说明,以下函数的参数均保持与fit
的同名参数相同的含义
如果没有特殊说明,以下函数的verbose参数(如果有)均只能取0或1
predict
predict(self, x, batch_size=32, verbose=0)
本函数按batch获得输入数据对应的输出,其参数有:
函数的返回值是预测值的numpy array
predict_classes
predict_classes(self, x, batch_size=32, verbose=1)
本函数按batch产生输入数据的类别预测结果
函数的返回值是类别预测结果的numpy array或numpy
predict_proba
predict_proba(self, x, batch_size=32, verbose=1)
本函数按batch产生输入数据属于各个类别的概率
函数的返回值是类别概率的numpy array
train_on_batch
train_on_batch(self, x, y, class_weight=None, sample_weight=None)
本函数在一个batch的数据上进行一次参数更新
函数返回训练误差的标量值或标量值的list,与evaluate的情形相同。
test_on_batch
test_on_batch(self, x, y, sample_weight=None)
本函数在一个batch的样本上对模型进行评估
函数的返回与evaluate的情形相同
predict_on_batch
predict_on_batch(self, x)
本函数在一个batch的样本上对模型进行测试
函数返回模型在一个batch上的预测结果
fit_generator
fit_generator(self, generator, samples_per_epoch, nb_epoch, verbose=1, callbacks=[], validation_data=None, nb_val_samples=None, class_weight=None, max_q_size=10)
利用Python的生成器,逐个生成数据的batch并进行训练。生成器与模型将并行执行以提高效率。例如,该函数允许我们在CPU上进行实时的数据提升,同时在GPU上进行模型训练
函数的参数是:
generator:生成器函数,生成器的输出应该为:
一个形如(inputs,targets)的tuple
一个形如(inputs, targets,sample_weight)的tuple。所有的返回值都应该包含相同数目的样本。生成器将无限在数据集上循环。每个epoch以经过模型的样本数达到
samples_per_epoch
时,记一个epoch结束
samples_per_epoch:整数,当模型处理的样本达到此数目时计一个epoch结束,执行下一个epoch
verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录
validation_data:具有以下三种形式之一
生成验证集的生成器
一个形如(inputs,targets)的tuple
一个形如(inputs,targets,sample_weights)的tuple
nb_val_samples:仅当
validation_data
是生成器时使用,用以限制在每个epoch结束时用来验证模型的验证集样本数,功能类似于samples_per_epoch
max_q_size:生成器队列的最大容量
函数返回一个History
对象
例子:
def generate_arrays_from_file(path):
while 1:
f = open(path)
for line in f:
# create numpy arrays of input data
# and labels, from each line in the file
x, y = process_line(line)
yield (x, y)
f.close()
model.fit_generator(generate_arrays_from_file('/my_file.txt'),
samples_per_epoch=10000, nb_epoch=10)
evaluate_generator
evaluate_generator(self, generator, val_samples, max_q_size=10)
本函数使用一个生成器作为数据源评估模型,生成器应返回与test_on_batch
的输入数据相同类型的数据。该函数的参数与fit_generator
同名参数含义相同