Sequential模型接口

优质
小牛编辑
138浏览
2023-12-01

如果刚开始学习Sequential模型,请首先移步这里阅读文档

常用Sequential属性

  • model.layers是添加到模型上的层的list

Sequential模型方法

compile

compile(self, optimizer, loss, metrics=[], sample_weight_mode=None)

编译用来配置模型的学习过程,其参数有

  • optimizer:字符串(预定义优化器名)或优化器对象,参考优化器

  • loss:字符串(预定义损失函数名)或目标函数,参考目标函数

  • metrics:列表,包含评估模型在训练和测试时的网络性能的指标,典型用法是metrics=['accuracy']

  • sample_weight_mode:如果你需要按时间步为样本赋权(2D权矩阵),将该值设为“temporal”。默认为“None”,代表按样本赋权(1D权)。在下面fit函数的解释中有相关的参考内容。

  • kwargs:使用TensorFlow作为后端请忽略该参数,若使用Theano作为后端,kwargs的值将会传递给 K.function

model = Sequential()
model.add(Dense(32, input_shape=(500,)))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='rmsprop',
      loss='categorical_crossentropy',
      metrics=['accuracy'])

fit

fit(self, x, y, batch_size=32, nb_epoch=10, verbose=1, callbacks=[], validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None)

本函数将模型训练nb_epoch轮,其参数有:

  • x:输入数据。如果模型只有一个输入,那么x的类型是numpy array,如果模型有多个输入,那么x的类型应当为list,list的元素是对应于各个输入的numpy array

  • y:标签,numpy array

  • batch_size:整数,指定进行梯度下降时每个batch包含的样本数。训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步。

  • nb_epoch:整数,训练的轮数,训练数据将会被遍历nb_epoch次。Keras中nb开头的变量均为"number of"的意思

  • verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录

  • callbacks:list,其中的元素是keras.callbacks.Callback的对象。这个list中的回调函数将会在训练过程中的适当时机被调用,参考回调函数

  • validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。

  • validation_data:形式为(X,y)的tuple,是指定的验证集。此参数将覆盖validation_spilt。

  • shuffle:布尔值或字符串,一般为布尔值,表示是否在训练过程中随机打乱输入样本的顺序。若为字符串“batch”,则是用来处理HDF5数据的特殊情况,它将在batch内部将数据打乱。

  • class_weight:字典,将不同的类别映射为不同的权值,该参数用来在训练过程中调整损失函数(只能用于训练)

  • sample_weight:权值的numpy array,用于在训练时调整损失函数(仅用于训练)。可以传递一个1D的与样本等长的向量用于对样本进行1对1的加权,或者在面对时序数据时,传递一个的形式为(samples,sequence_length)的矩阵来为每个时间步上的样本赋不同的权。这种情况下请确定在编译模型时添加了sample_weight_mode='temporal'

fit函数返回一个History的对象,其History.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况


evaluate

evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None)

本函数按batch计算在某些输入数据上模型的误差,其参数有:

  • x:输入数据,与fit一样,是numpy array或numpy array的list

  • y:标签,numpy array

  • batch_size:整数,含义同fit的同名参数

  • verbose:含义同fit的同名参数,但只能取0或1

  • sample_weight:numpy array,含义同fit的同名参数

本函数返回一个测试误差的标量值(如果模型没有其他评价指标),或一个标量的list(如果模型还有其他的评价指标)。model.metrics_names将给出list中各个值的含义。

如果没有特殊说明,以下函数的参数均保持与fit的同名参数相同的含义

如果没有特殊说明,以下函数的verbose参数(如果有)均只能取0或1


predict

predict(self, x, batch_size=32, verbose=0)

本函数按batch获得输入数据对应的输出,其参数有:

函数的返回值是预测值的numpy array


predict_classes

predict_classes(self, x, batch_size=32, verbose=1)

本函数按batch产生输入数据的类别预测结果

函数的返回值是类别预测结果的numpy array或numpy


predict_proba

predict_proba(self, x, batch_size=32, verbose=1)

本函数按batch产生输入数据属于各个类别的概率

函数的返回值是类别概率的numpy array


train_on_batch

train_on_batch(self, x, y, class_weight=None, sample_weight=None)

本函数在一个batch的数据上进行一次参数更新

函数返回训练误差的标量值或标量值的list,与evaluate的情形相同。


test_on_batch

test_on_batch(self, x, y, sample_weight=None)

本函数在一个batch的样本上对模型进行评估

函数的返回与evaluate的情形相同


predict_on_batch

predict_on_batch(self, x)

本函数在一个batch的样本上对模型进行测试

函数返回模型在一个batch上的预测结果


fit_generator

fit_generator(self, generator, samples_per_epoch, nb_epoch, verbose=1, callbacks=[], validation_data=None, nb_val_samples=None, class_weight=None, max_q_size=10)

利用Python的生成器,逐个生成数据的batch并进行训练。生成器与模型将并行执行以提高效率。例如,该函数允许我们在CPU上进行实时的数据提升,同时在GPU上进行模型训练

函数的参数是:

  • generator:生成器函数,生成器的输出应该为:

    • 一个形如(inputs,targets)的tuple

    • 一个形如(inputs, targets,sample_weight)的tuple。所有的返回值都应该包含相同数目的样本。生成器将无限在数据集上循环。每个epoch以经过模型的样本数达到samples_per_epoch时,记一个epoch结束

  • samples_per_epoch:整数,当模型处理的样本达到此数目时计一个epoch结束,执行下一个epoch

  • verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录

  • validation_data:具有以下三种形式之一

    • 生成验证集的生成器

    • 一个形如(inputs,targets)的tuple

    • 一个形如(inputs,targets,sample_weights)的tuple

  • nb_val_samples:仅当validation_data是生成器时使用,用以限制在每个epoch结束时用来验证模型的验证集样本数,功能类似于samples_per_epoch

  • max_q_size:生成器队列的最大容量

函数返回一个History对象

例子:

def generate_arrays_from_file(path):
    while 1:
        f = open(path)
        for line in f:
            # create numpy arrays of input data
            # and labels, from each line in the file
            x, y = process_line(line)
            yield (x, y)
        f.close()

model.fit_generator(generate_arrays_from_file('/my_file.txt'),
        samples_per_epoch=10000, nb_epoch=10)

evaluate_generator

evaluate_generator(self, generator, val_samples, max_q_size=10)

本函数使用一个生成器作为数据源评估模型,生成器应返回与test_on_batch的输入数据相同类型的数据。该函数的参数与fit_generator同名参数含义相同