当前位置: 首页 > 知识库问答 >
问题:

为什么tflite模型的精度与keras模型有如此大的差异?

拓拔阎宝
2023-03-14

我做了一个模型,预测一个字符在一个图像,做车牌识别。它在我的电脑上运行得非常好,但我需要把这项工作放在一个Android应用程序中。所以我开发了一个小应用程序,将我的keras模型转换为TFLITE。现在它总是预测同一个角色。

mod_path = "License_character_recognition.h5"

def load_model(path,custom_objects={},verbose=0):
    #from tf.keras.models import model_from_json

    path = splitext(path)[0]
    with open('MobileNets_character_recognition.json','r') as json_file:
        model_json = json_file.read()
    model = tf.keras.models.model_from_json(model_json, custom_objects=custom_objects)
    model.load_weights('%s.h5' % path)
    if verbose: print('Loaded from %s' % path)
    return model

keras_mod = load_model(mod_path)

converter = tf.lite.TFLiteConverter.from_keras_model(keras_mod)
tflite_model = converter.convert()

# Save the TF Lite model.
with tf.io.gfile.GFile('ocr.tflite', 'wb') as f:
    f.write(tflite_model)

有没有更好的方法转换模型,还是我遗漏了什么?

编辑:这是我管理位图的操作

        try {
            Mat bis = Utils.loadResource(MainActivity.this, R.drawable.plaque, Imgcodecs.IMREAD_COLOR);
            cvtColor(bis, bis, COLOR_BGR2RGB);

            Mat m = Utils.loadResource(MainActivity.this, R.drawable.plaque,Imgcodecs.IMREAD_GRAYSCALE);

            blur(m, blur, new Size(2,2));

            threshold(blur, bin, 0, 255, THRESH_BINARY_INV + THRESH_OTSU);

            ArrayList<MatOfPoint> contours;
            contours = getContours(bin);

            //Try to sort from left to right
            Collections.sort(contours, new SortByTopLeft());
            Log.d("Contour", String.valueOf(contours.size()));
            int i = 0;
            for (MatOfPoint c : contours){
                Rect cont = boundingRect(c);
                float ratio = (float) (cont.height/cont.width);
                Log.d("Ratio", String.valueOf(ratio));
                float pourcent =  ((float) cont.height/ (float) bin.height());
                Log.d("pourcent", String.valueOf(pourcent));
                if (ratio >= 1 && ratio <= 2.5){
                    if(pourcent >=0.5){
                        Log.d("Ui", String.valueOf(cont));
                        rectangle(bis, cont, new Scalar(0,255,0), 2);

                        //Separate numbers
                        Mat curr_num = new Mat(bin, cont);
                        Bitmap curbit = Bitmap.createBitmap(curr_num.cols(), curr_num.rows(), Bitmap.Config.ARGB_8888);
                        Utils.matToBitmap(curr_num, curbit);
                        images[i].setImageBitmap(curbit);
                        int charac = classifier.classify(curbit);
                        Log.d("Result", String.valueOf(charac));
                        result.setText(String.valueOf(charac));
                        if (i < 6){
                            i++;
                        }
                    }

                }

共有1个答案

高嘉熙
2023-03-14

您可以使用TensorFlow Lite Android支持库。该库旨在帮助处理TensorFlow Lite模型的输入和输出,并使TensorFlow Lite解释器更易于使用。

如以下所示,在本文中找到更多信息:


    Bitmap assetsBitmap = getBitmapFromAsset(mContext, "picture.jpg");
    // Initialization code
    // Create an ImageProcessor with all ops required. For more ops, please
    // refer to the ImageProcessor Architecture.
    ImageProcessor imageProcessor =
            new ImageProcessor.Builder()
                    .add(new ResizeOp(32, 32, ResizeOp.ResizeMethod.BILINEAR))
                    //.add(new NormalizeOp(127.5f, 127.5f))
                    .build();

    // Create a TensorImage object. This creates the tensor of the corresponding
    // tensor type (flot32 in this case) that the TensorFlow Lite interpreter needs.
    TensorImage tImage = new TensorImage(DataType.FLOAT32);

    // Analysis code for every frame
    // Preprocess the image
    tImage.load(assetsBitmap);
    tImage = imageProcessor.process(tImage);

    // Create a container for the result and specify that this is not a quantized model.
    // Hence, the 'DataType' is defined as FLOAT32
    TensorBuffer probabilityBuffer = TensorBuffer.createFixedSize(new int[]{1, 10}, DataType.FLOAT32);
    interpreter.run(tImage.getBuffer(), probabilityBuffer.getBuffer());

    Log.i("RESULT", Arrays.toString(probabilityBuffer.getFloatArray()));

    return getSortedResult(result);
}
 类似资料:
  • 我正在开发一个端到端训练和量化感知的训练示例。使用CIFAR10数据集,我加载了一个预训练的MobilenetV2模型,然后使用TensorFlow指南中的代码来量化我的模型。整个过程适当结束后,我得到以下结果: 注意,我并没有更改我从TensorFlow指南中附带的代码,我只是使用了一个不同的数据集和模型。

  • 这是我在Android Studio上导入的tensorflow Lite模型的代码: 在此处输入图像描述 这是我运行应用程序时的输出: 在此处输入图像描述 我不明白,怎么才能得到模型输出?? 更新: 输出是6个元素的浮点数组,但我想要的是 Largesse 元素的索引,我尝试了这样的代码: 在此处输入图像描述 对吗??我在每个预测上都得到相同的输出

  • 以上是目前我的CNN的架构。然而,它说它有1.8m可训练的参数。为什么会这样?我以为第一层给出了(32*4=128个参数),但是我如何找到模型的其余部分有多少个参数? 我的理解是,CNN架构应该只依赖于过滤和最大池,因为它们是共享权重。为什么我有这么多参数?我应该如何着手减少这个数字? 我不是问如何使用“汇总”找到参数的数量。我是问为什么我的模型有这么多参数,以及我如何减少这个数字。我不直观地理解

  • 我已经使用tensorflow后端训练了一个DNN,我想在FireBase中托管它。训练好的模型被保存为.meta文件,我尝试使用下面的代码将模型转换为tflite,但我遇到了一些错误。那么我如何将这个模型转换成Tensorflow Lite呢?

  • 我正在培训一个Keras模型,我想在量化的8位环境(微控制器)中使用TFLite部署它。为了提高量化性能,我进行量化感知训练。然后,我使用验证集作为代表性数据集创建量化的TFLite模型。使用验证集评估性能,如图所示: 不同条件下20次运行的不同批次的错误率 如果我不是简单地从QA训练模型(图中红色)生成TFLite模型(图中青色),而是将权重从QA训练模型复制到原始模型,然后生成TFLite模型

  • 我使用Deeplab官方Github页面上的python脚本,用自己的数据集训练了一个语义分割模型。培训和测试都进行得很好。 然后我使用以下命令使用export_model.py将模型导出到冻结图: 这也成功了。现在我想使用convert_to_tflite.py将我的冻结图形转换为tflite。这个脚本有2个我不理解的输入参数:“input_tensor_name”和“output_tensor