seaborn.lineplot
seaborn.lineplot(x=None, y=None, hue=None, size=None, style=None, data=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, dashes=True, markers=None, style_order=None, units=None, estimator='mean', ci=95, n_boot=1000, sort=True, err_style='band', err_kws=None, legend='brief', ax=None, **kwargs)
Draw a line plot with possibility of several semantic groupings.
The relationship between x
and y
can be shown for different subsets of the data using the hue
, size
, and style
parameters. These parameters control what visual semantics are used to identify the different subsets. It is possible to show up to three dimensions independently by using all three semantic types, but this style of plot can be hard to interpret and is often ineffective. Using redundant semantics (i.e. both hue
and style
for the same variable) can be helpful for making graphics more accessible.
See the color_palette()
, or a dictionary mapping hue levels to matplotlib colors.
hue_order
:list, optional
Specified order for the appearance of the
hue
variable levels, otherwise they are determined from the data. Not relevant when thehue
variable is numeric.
hue_norm
:tuple or Normalize object, optional
Normalization in data units for colormap applied to the
hue
variable when it is numeric. Not relevant if it is categorical.
sizes
:list, dict, or tuple, optional
An object that determines how sizes are chosen when
size
is used. It can always be a list of size values or a dict mapping levels of thesize
variable to sizes. Whensize
is numeric, it can also be a tuple specifying the minimum and maximum size to use such that other values are normalized within this range.
size_order
:list, optional
Specified order for appearance of the
size
variable levels, otherwise they are determined from the data. Not relevant when thesize
variable is numeric.
size_norm
:tuple or Normalize object, optional
Normalization in data units for scaling plot objects when the
size
variable is numeric.
dashes
:boolean, list, or dictionary, optional
Object determining how to draw the lines for different levels of the
style
variable. Setting toTrue
will use default dash codes, or you can pass a list of dash codes or a dictionary mapping levels of thestyle
variable to dash codes. Setting toFalse
will use solid lines for all subsets. Dashes are specified as in matplotlib: a tuple of(segment, gap)
lengths, or an empty string to draw a solid line.
markers
:boolean, list, or dictionary, optional
Object determining how to draw the markers for different levels of the
style
variable. Setting toTrue
will use default markers, or you can pass a list of markers or a dictionary mapping levels of thestyle
variable to markers. Setting toFalse
will draw marker-less lines. Markers are specified as in matplotlib.
style_order
:list, optional
Specified order for appearance of the
style
variable levels otherwise they are determined from the data. Not relevant when thestyle
variable is numeric.
units
:{long_form_var}
Grouping variable identifying sampling units. When used, a separate line will be drawn for each unit with appropriate semantics, but no legend entry will be added. Useful for showing distribution of experimental replicates when exact identities are not needed.
estimator
:name of pandas method or callable or None, optional
Method for aggregating across multiple observations of the
y
variable at the samex
level. IfNone
, all observations will be drawn.
ci
:int or “sd” or None, optional
Size of the confidence interval to draw when aggregating with an estimator. “sd” means to draw the standard deviation of the data. Setting to
None
will skip bootstrapping.
n_boot
:int, optional
Number of bootstraps to use for computing the confidence interval.
sort
:boolean, optional
If True, the data will be sorted by the x and y variables, otherwise lines will connect points in the order they appear in the dataset.
err_style
:“band” or “bars”, optional
Whether to draw the confidence intervals with translucent error bands or discrete error bars.
err_band
:dict of keyword arguments
Additional paramters to control the aesthetics of the error bars. The kwargs are passed either to
ax.fill_between
orax.errorbar
, depending on theerr_style
.
legend
:“brief”, “full”, or False, optional
How to draw the legend. If “brief”, numeric
hue
andsize
variables will be represented with a sample of evenly spaced values. If “full”, every group will get an entry in the legend. IfFalse
, no legend data is added and no legend is drawn.
ax
:matplotlib Axes, optional
Axes object to draw the plot onto, otherwise uses the current Axes.
kwargs
:key, value mappings
Other keyword arguments are passed down to
plt.plot
at draw time.
返回值:ax
:matplotlib Axes
Returns the Axes object with the plot drawn onto it.
See also
Show the relationship between two variables without emphasizing continuity of the x
variable.Show the relationship between two variables when one is categorical.
Examples
Draw a single line plot with error bands showing a confidence interval:
>>> import seaborn as sns; sns.set()
>>> import matplotlib.pyplot as plt
>>> fmri = sns.load_dataset("fmri")
>>> ax = sns.lineplot(x="timepoint", y="signal", data=fmri)
Group by another variable and show the groups with different colors:
>>> ax = sns.lineplot(x="timepoint", y="signal", hue="event",
... data=fmri)
Show the grouping variable with both color and line dashing:
>>> ax = sns.lineplot(x="timepoint", y="signal",
... hue="event", style="event", data=fmri)
Use color and line dashing to represent two different grouping variables:
>>> ax = sns.lineplot(x="timepoint", y="signal",
... hue="region", style="event", data=fmri)
Use markers instead of the dashes to identify groups:
>>> ax = sns.lineplot(x="timepoint", y="signal",
... hue="event", style="event",
... markers=True, dashes=False, data=fmri)
Show error bars instead of error bands and plot the standard error:
>>> ax = sns.lineplot(x="timepoint", y="signal", hue="event",
... err_style="bars", ci=68, data=fmri)
Show experimental replicates instead of aggregating:
>>> ax = sns.lineplot(x="timepoint", y="signal", hue="event",
... units="subject", estimator=None, lw=1,
... data=fmri.query("region == 'frontal'"))
Use a quantitative color mapping:
>>> dots = sns.load_dataset("dots").query("align == 'dots'")
>>> ax = sns.lineplot(x="time", y="firing_rate",
... hue="coherence", style="choice",
... data=dots)
Use a different normalization for the colormap:
>>> from matplotlib.colors import LogNorm
>>> ax = sns.lineplot(x="time", y="firing_rate",
... hue="coherence", style="choice",
... hue_norm=LogNorm(), data=dots)
Use a different color palette:
>>> ax = sns.lineplot(x="time", y="firing_rate",
... hue="coherence", style="choice",
... palette="ch:2.5,.25", data=dots)
Use specific color values, treating the hue variable as categorical:
>>> palette = sns.color_palette("mako_r", 6)
>>> ax = sns.lineplot(x="time", y="firing_rate",
... hue="coherence", style="choice",
... palette=palette, data=dots)
Change the width of the lines with a quantitative variable:
>>> ax = sns.lineplot(x="time", y="firing_rate",
... size="coherence", hue="choice",
... legend="full", data=dots)
Change the range of line widths used to normalize the size variable:
>>> ax = sns.lineplot(x="time", y="firing_rate",
... size="coherence", hue="choice",
... sizes=(.25, 2.5), data=dots)
Plot from a wide-form DataFrame:
>>> import numpy as np, pandas as pd; plt.close("all")
>>> index = pd.date_range("1 1 2000", periods=100,
... freq="m", name="date")
>>> data = np.random.randn(100, 4).cumsum(axis=0)
>>> wide_df = pd.DataFrame(data, index, ["a", "b", "c", "d"])
>>> ax = sns.lineplot(data=wide_df)
Plot from a list of Series:
>>> list_data = [wide_df.loc[:"2005", "a"], wide_df.loc["2003":, "b"]]
>>> ax = sns.lineplot(data=list_data)
Plot a single Series, pass kwargs to plt.plot
:
>>> ax = sns.lineplot(data=wide_df["a"], color="coral", label="line")
Draw lines at points as they appear in the dataset:
>>> x, y = np.random.randn(2, 5000).cumsum(axis=1)
>>> ax = sns.lineplot(x=x, y=y, sort=False, lw=1)