第4章 OpenCL案例 - 4.5 生产者-消费者

优质
小牛编辑
135浏览
2023-12-01

很多OpenCL应用中,前一个内核的输出可能就会作为下一个内核的输入。换句话说,第一个内核是生产者,第二个内核是消费者。很多应用中生产者和消费者是并发工作的,生产者只将产生的数据交给消费者。OpenCL 2.0中提供管道内存对象,用来帮助生产者-消费者这样的应用。管道所提供的潜在功能性帮助,无论生产者-消费者内核是串行执行或并发执行。

本节中,我们将使用管道创建一个生产者-消费者应用,其中生产者和消费者分别用内核构成,这两个内核使用的是本章前两个例子:卷积和直方图。卷积内核将会对图像进行处理,然后使用管道将输出图像传入直方图内核中(如图4.5所示)。为了描述额外的功能,展示管道如何使用处理单元提高应用效率。本节的例子我们将使用多设备完成。卷积内核将执行在GPU设备上,直方图内核将执行在CPU设备上。多个设备上执行内核可以保证两个内核能够并发执行,其中管道就用来传输生产者需要的数据(且为消费者需要的数据)。对于管道对象的详细描述将在第6章展开。那么现在,让我们来了解一下本节例子的一些基本需求。

管道内存中的数据(称为packets)组织为先入先出(FIFO)结构。管道对象的内存在全局内存上开辟,所以可以被多个内核同时访问。这里需要注意的是,管道上存储的数据,主机端无法访问。

内核中管道属性可能是只读(read_only)或只写(write_only),不过不能是读写。如果管道对象没有指定是只读或只写,那么编译器将默认其为只读。管道在内核的参数列表中,通过使用关键字pipe进行声明,后跟数据访问类型,和数据包的数据类型。例如,pipe __read_only float *input将会创建一个只读管道,该管道中包含的数据为单精度浮点类型。

4.5 生产者-消费者 - 图1

图4.5 生产者内核将滤波后生成的像素点,通过管道传递给消费者内核,让消费者内核产生直方图:(a)为原始图像;(b)为滤波后图像;(c)为生成的直方图。

为了访问管道,OpenCL C提供内置函数read_pipe()write_pipe()

  1. int read_pipe(pipe gentype p, gentype *ptr);
  2. int write_pipe(pipe gentype p, const gentype *ptr);

当一个工作项调用read_pipe()(程序清单4.10,第16行),一个包将从管道p中读取到ptr中。如果包读取正常,该函数返回0;如果管道为空,则该函数返回一个负值。write_pipe()(程序清单4.9,第50行)与读取类似,会将ptr上的包写入到管道p中。如果包写入正常,该函数返回0;如果管道已满,则该函数返回一个负值

程序清单4.9和4.10展示了我们应用中内核的实现。当我们指定目标消费者内核运行在CPU时,那么只有一个工作项去创建直方图。同样,当我们显式的指定一个CPU,我们需要之间将直方图的结果存放在全局内存中(第8章将对这样的权衡做更细化的讨论)。

{%ace edit=false, lang=’c_cpp’%}
__constant sampler_t sampler =
CLK_NORMALIZED_COORDS_FALSE |
CLK_FILTER_NEAREST |
CLK_ADDRESS_CLAMP_TO_EDGE;

kernel
void producerKernel(
image2d_t
read_only inputImage,
pipe write_only float *outputPipe, constant float filter,
int filterWidth)
{
/
Store each work-item’s unique row and column */
int column = get_global_id(0);
int row = get_global_id(1);

/* Half the width of the filter is needed for indexing

  • memory later*/
    int halfWidth = (int)(filterWidth / 2);

    / Used to hold the value of the output pixel /
    float sum = 0.0f;

    / Iterator for the filter /
    int filterIdx = 0;

    /* Each work-item iterates around its local area on the basis of the

  • size of the filter */
    int2 coords; // Coordinates for accessing the image

    / Iterate the filter rows /
    for (int i = -halfWidth; i <= halfWidth; i++)
    {
    coords.y = row + i;
    / Iterate over the filter columns /
    for (int j = -halfWidth; j <= halfWidth; j++)
    {
    coords.x = column + j;

    /* Read a pixel from the image. A single channel image

    • stores the pixel in the x coordinate of the returned
    • vector. /
      float4 pixel;
      pixel = read_imagef(inputImage, sampler, coords);
      sum += pixel.x
      filter[filterIdx++];
      }
      }

    / Write the output pixel to the pipe /
    write_pipe(outputPipe, &sum);
    }
    {%endace%}

程序清单4.9 卷积内核(生产者)

{%ace edit=false, lang=’c_cpp’%}
kernel
void consumerKernel(
pipe
read_only float inputPipe,
int totalPixels,
__global int
histogram)
{
int pixelCnt;
float pixel;

/ Loop to process all pixels from the producer kernel /
for (pixelCnt = 0; pixelCnt < totalPixels; pixelCnt++)
{
/* Keep trying to read a pixel from the pipe

  1. * until one becomes available */
  2. while(read_pipe(inputPipe, &pixel));
  3. /* Add the pixel value to the histogram */
  4. histogram[(int)pixel]++;

}
}
{%endace%}

程序清单4.10 卷积内核(消费者)

虽然,存储在管道中的数据不能被主机访问,不过在主机端还是需要使用对应的API创建对应的管道对象。其创建API如下所示:

  1. cl_pipe clCreatePipe(
  2. cl_context context,
  3. cl_mem_flags flags,
  4. cl_uint pipe_packet_size,
  5. cl_uint pipe_max_packets,
  6. const cl_pipe_properties *properties,
  7. cl_int *errcode_ret)

我们需要考虑两个内核不是并发的情况;因此,我们就需要创建足够大的管道对象能存放下图像元素数量个包:

  1. cl_mem pipe = clCreatepipe(context, 0, sizeof(float), imageRows * imageCols, NULL, &status);

利用多个设备的话,就需要在主机端多加几步。当创建上下文对象时,需要提供两个设备(一个CPU设备,一个GPU设备),并且每个设备都需要有自己的命令队列。另外,程序对象需要产生两个内核。加载内核是,需要分别入队其各自的命令队列:生产者(卷积)内核需要入队GPU命令队列,消费者(直方图)内核需要入队CPU命令队列。完整的代码在程序清单4.11中。

{%ace edit=false, lang=’c_cpp’%}
/ System includes /

include

include

include

/ OpenCL includes /

include

/ Utility functions /

include “utils.h”

include “bmp-utils.h”

/ Filter for the convolution /
static float gaussianBlurFilter[25] = {
1.0f / 273.0f, 4.0f / 273.0f, 7.0f / 273.0f, 4.0f / 273.0f, 1.0f / 273.0f,
4.0f / 273.0f, 16.0f / 273.0f, 26.0f / 273.0f, 16.0f / 273.0f, 4.0f / 273.0f,
7.0f / 273.0f, 26.0f / 273.0f, 41.0f / 273.0f, 26.0f / 273.0f, 7.0f / 273.0f,
4.0f / 273.0f, 16.0f / 273.0f, 26.0f / 273.0f, 16.0f / 273.0f, 4.0f / 273.0f,
1.0f / 273.0f, 4.0f / 273.0f, 7.0f / 273.0f, 4.0f / 273.0f, 1.0f / 273.0f
};
static const int filterWidth = 5;
static const int filterSize = 25 * sizeof(float);

/ Number of histogram bins /
static const int HIST_BINS = 256;

int main(int argc, char argv[])
{
/
Host data /
float
hInputImage = NULL;
int *hOutputHistogram = NULL;

/* Allocate space for the input image and read the

  • data from dist /
    int imageRows;
    int imageCols;
    hInputImage = readBmpFloat(“../../Images/cat.bmp”, &imageRows, &imageCols);
    const int imageElements = imageRows
    imageCols;
    const size_t imageSize = imageElements * sizeof(float);

    / Allocate space for the histogram on the host /
    const int histogramSize = HIST_BINS sizeof(int);
    hOutputHistogram = (int
    )malloc(histogramSize);
    if (!hOutputHistogram){ exit(-1); }

    / Use this to check the output of each API call /
    cl_int status;

    / Get the first platform /
    cl_platform_id platform;
    status = clGetPlatformIDs(1, &platform, NULL);
    check(status);

    / Get the devices /
    cl_device_id devices[2];
    cl_device_id gpuDevice;
    cl_device_id cpuDevice;
    status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, 1, &gpuDevice, NULL);
    status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &cpuDevice, NULL);
    check(status);
    devices[0] = gpuDevice;
    devices[1] = cpuDevice;

    / Create a context and associate it with the devices /
    cl_context context;
    context = clCreateContext(NULL, 2, devices, NULL, NULL, &status);
    check(status);

    / Create the command-queues /
    cl_command_queue gpuQueue;
    cl_command_queue cpuQueue;
    gpuQueue = clCreateCommandQueue(context, gpuDevice, 0, &status);
    check(status);
    cpuQueue = clCreateCommandQueue(context, cpuDevice, 0, &status);
    check(status);

    /* The image desriptor describes how the data will be stored

  • in memory. This descriptor initializes a 2D image with no pitch*/
    cl_image_desc desc;
    desc.image_type = CL_MEM_OBJECT_IMAGE2D;
    desc.image_width = imageCols;
    desc.image_height = imageRows;
    desc.image_depth = 0;
    desc.image_array_size = 0;
    desc.image_row_pitch = 0;
    desc.image_slice_pitch = 0;
    desc.num_mip_levels = 0;
    desc.num_samples = 0;
    desc.buffer = NULL;

    / The image format descibes the properties of each pixel /
    cl_image_format format;
    format.image_channel_order = CL_R; // single channel
    format.image_channel_data_type = CL_FLOAT;

    /* Create the input image and initialize it using a

  • pointer to the image data on the host. */
    cl_mem inputImage;
    inputImage = clCreateImage(context, CL_MEM_READ_ONLY, &format, &desc, NULL, NULL);

    / Create a buffer object for the ouput histogram /
    cl_mem ouputHistogram;
    outputHisrogram = clCreateBuffer(context, CL_MEM_WRITE_ONLY, &format, &desc, NULL, NULL);

    / Create a buffer for the filter /
    cl_mem filter;
    filter = clCreateBuffer(context, cl_MEM_READ_ONLY, filterSize, NULL, &status);
    check(status);

    cl_mem pipe;
    pipe = clCreatePipe(context, 0, sizeof(float), imageRows * imageCols, NULL, &status);

    / Copy the host image data to the GPU /
    size_t origin[3] = {0,0,0}; // Offset within the image to copy from
    size_t region[3] = {imageCols, imageRows, 1}; // Elements to per dimension
    status = clEnqueueWriteImage(gpuQueue, inputImage, CL_TRUE, origin, region, 0, 0, hInputImage, 0, NULL, NULL);
    check(status);

    / Write the filter to the GPU /
    status = clEnqueueWriteBuffer(gpuQueue, filter, CL_TRUE, 0, filterSize, gaussianBlurFilter, 0, NULL, NULL);
    check(status);

    / Initialize the output istogram with zeros /
    int zero = 0;
    status = clEnqueueFillBuffer(cpuQueue, outputHistogram, &zero, sizeof(int), 0, histogramSize, 0, NULL, NULL);
    check(status);

    / Create a program with source code /
    char programSource = readFile(“producer-consumer.cl”);
    size_t programSourceSize = strlen(programSource);
    cl_program program = clCreateProgramWithSource(context, 1, (const char*
    )&programSource, &programSourceLen, &status);
    check(status);

    / Build (compile) the program for the devices /
    status = clBuildProgram(program, 2, devices, NULL, NULL, NULL);
    if (status != CL_SUCCESS)
    {
    printCompilerError(program, gpuDevice);
    exit(-1);
    }

    / Create the kernel /
    cl_kernel producerKernel;
    cl_kernel consumerKernel;
    producerKernel = clCreateKernel(program, “producerKernel”, &status);
    check(status);
    consumerKernel = clCreateKernel(program, “consumerKernel”, &status);
    check(status);

    / Set the kernel arguments /
    status = clSetKernelArg(producerKernel, 0, sizeof(cl_mem), &inputImage);
    status |= clSetKernelArg(producerKernel, 1, sizeof(cl_mem), &pipe);
    status |= clSetKernelArg(producerKernel, 2, sizeof(int), &filterWidth);
    check(status);

    status |= clSetKernelArg(consumerKernel, 0, sizeof(cl_mem), &pipe);
    status |= clSetKernelArg(consumerKernel, 1, sizeof(int), &imageElements);
    status |= clSetKernelArg(consumerKernel, 2, sizeof(cl_mem), &outputHistogram);
    check(status);

    / Define the index space and work-group size /
    size_t producerGlobalSize[2];
    producerGlobalSize[0] = imageCols;
    producerGlobalSize[1] = imageRows;

    size_t producerLocalSize[2];
    producerLocalSize[0] = 8;
    producerLocalSize[1] = 8;

    size_t consumerGlobalSize[1];
    consumerGlobalSize[0] = 1;

    size_t consumerLocalSize[1];
    consumerLocalSize[0] = 1;

    / Enqueue the kernels for execution /
    status = clEnqueueNDRangeKernel(gpuQueue, producerKernel, 2, NULL, producerGlobalSize, producerLocalSize, 0, NULL, NULL);

    status = clEnqueueNDRangeKernel(cpuQueue, consumerKernel, 2, NULL, consumerGlobalSize, consumerLocalSize, 0, NULL, NULL);

    / Read the output histogram buffer to the host /
    status = clEnqueueReadBuffer(cpuQueue, outputHistogram, CL_TRUE, 0, histogramSize, hOutputHistogram, 0, NULL, NULL);
    check(status);

    / Free OpenCL resources /
    clReleaseKernel(producerKernel);
    clReleaseKernel(consumerKernel);
    clReleaseProgram(program);
    clReleaseCommandQueue(gpuQueue);
    clReleaseCommandQueue(cpuQueue);
    clReleaseMemObject(inputImage);
    clReleaseMemObject(outputHistogram);
    clReleaseMemObject(filter);
    clReleaseMemObject(pipe);
    clReleaseContext(context);

    / Free host resources /
    free(hInputImage);
    free(hOutputHistogram);
    free(programSource);

    return 0;
    }
    {%endace%}

程序清单4.11 生产者-消费者主机端完整代码