前面讲解了存储普通树的双亲表示法和孩子表示法,本节来讲解最后一种常用方法—— 孩子兄弟表示法。 图 1 普通树示意图 树结构中,位于同一层的节点之间互为兄弟节点。例如,图 1 的普通树中,节点 A、B 和 C 互为兄弟节点,而节点 D、E 和 F 也互为兄弟节点。 孩子兄弟表示法,采用的是链式存储结构,其存储树的实现思想是:从树的根节点开始,依次用链表存储各个节点的孩子节点和兄弟节点。 因此,该
前面学习了如何用双亲表示法存储普通树,本节再学习一种存储普通树的方法—— 孩子表示法。 孩子表示法存储普通树采用的是 " 顺序表+ 链表" 的组合结构,其存储过程是:从树的根节点开始,使用顺序表依次存储树中各个节点,需要注意的是,与双亲表示法不同,孩子表示法会给各个节点配备一个链表,用于存储各节点的孩子节点位于顺序表中的位置。 如果节点没有孩子节点(叶子节点),则该节点的链表为空链表。 例如,使用
前面讲了 二叉树的顺序存储和链式存储,本节来学习如何存储具有普通树结构的数据。 图 1 普通树存储结构 如图 1 所示,这是一棵普通的树,该如何存储呢?通常,存储具有普通树结构数据的方法有 3 种: 双亲表示法; 孩子表示法; 孩子兄弟表示法; 本节先来学习 双亲表示法。 双亲表示法采用顺序表(也就是数组)存储普通树,其实现的核心思想是:顺序存储各个节点的同时,给各节点附加一个记录其父节点位置的变
主要内容:层次遍历的实现过程,实现代码前边介绍了 二叉树的先序、中序和后序的遍历算法,运用了 栈的 数据结构,主要思想就是按照先左子树后右子树的顺序依次遍历树中各个结点。 本节介绍另外一种遍历方式:按照二叉树中的层次从左到右依次遍历每层中的结点。具体的实现思路是:通过使用 队列的数据结构,从树的根结点开始,依次将其左孩子和右孩子入队。而后每次队列中一个结点出队,都将其左孩子和右孩子入队,直到树中所有结点都出队,出队结点的先后顺序就是层
主要内容:递归实现,非递归实现二叉树后序遍历的实现思想是:从根节点出发,依次遍历各节点的左右子树,直到当前节点左右子树遍历完成后,才访问该节点元素。 图 1 二叉树 如图 1 中,对此二叉树进行后序遍历的操作过程为: 从根节点 1 开始,遍历该节点的左子树(以节点 2 为根节点); 遍历节点 2 的左子树(以节点 4 为根节点); 由于节点 4 既没有左子树,也没有右子树,此时访问该节点中的元素 4,并回退到节点 2 ,遍
主要内容:递归实现,非递归实现二叉树中序遍历的实现思想是: 访问当前节点的左子树; 访问根节点; 访问当前节点的右子树; 图 1 二叉树 以图 1 为例,采用中序遍历的思想遍历该二叉树的过程为: 访问该二叉树的根节点,找到 1; 遍历节点 1 的左子树,找到节点 2; 遍历节点 2 的左子树,找到节点 4; 由于节点 4 无左孩子,因此找到节点 4,并遍历节点 4 的右子树; 由于节点 4 无右子树,因此节点 2 的左子
主要内容:递归实现,非递归实现二叉树先序遍历的实现思想是: 访问根节点; 访问当前节点的左子树; 若当前节点无左子树,则访问当前节点的右子树; 图 1 二叉树 以图 1 为例,采用先序遍历的思想遍历该二叉树的过程为: 访问该二叉树的根节点,找到 1; 访问节点 1 的左子树,找到节点 2; 访问节点 2 的左子树,找到节点 4; 由于访问节点 4 左子树失败,且也没有右子树,因此以节点 4 为根节点的子树遍历完成。但节点
上一节讲了 二叉树的顺序存储,通过学习你会发现,其实二叉树并不适合用数组存储,因为并不是每个二叉树都是完全二叉树,普通二叉树使用 顺序表存储或多或多会存在空间浪费的现象。 本节我们学习二叉树的 链式存储结构。 图 1 普通二叉树示意图 如图 1 所示,此为一棵普通的二叉树,若将其采用链式存储,则只需从树的根节点开始,将各个节点及其左右孩子使用 链表存储即可。因此,图 1 对应的链式存储结构如图 2
二叉树的存储结构有两种,分别为顺序存储和链式存储。本节先介绍 二叉树的顺序存储结构。 二叉树的顺序存储,指的是使用 顺序表(数组)存储二叉树。需要注意的是,顺序存储只适用于完全二叉树。换句话说,只有完全二叉树才可以使用顺序表存储。 因此,如果我们想顺序存储普通二叉树,需要提前将普通二叉树转化为完全二叉树。 有读者会说,满二叉树也可以使用顺序存储。要知道,满二叉树也是完全二叉树,因为它满足完全二叉树
主要内容:二叉树的性质,满二叉树,完全二叉树,总结通过《 树的存储结构》一节的学习,我们了解了一些树存储结构的基本知识。本节将给大家介绍一类具体的树结构—— 二叉树。 简单地理解,满足以下两个条件的树就是二叉树: 本身是有序树; 树中包含的各个节点的度不能超过 2,即只能是 0、1 或者 2; 例如,图 1a) 就是一棵二叉树,而图 1b) 则不是。 图 1 二叉树示意图 二叉树的性质 经过前人的总结,二叉树具有以下几个性质: 二叉树中,第 i
主要内容:树的结点,子树和空树,结点的度和层次,有序树和无序树,森林,树的表示方法,总结之前介绍的所有的 数据结构都是 线性存储结构。本章所介绍的树结构是一种非线性存储结构,存储的是具有“一对多”关系的数据元素的集合。 (A)
pstree 命令是以树形结构显示程序和进程之间的关系,此命令的基本格式如下: [root@localhost ~]# pstree [选项] [PID或用户名] 表 1 罗列出了 pstree 命令常用选项以及各自的含义。 表 1 pstree命令常用选项及含义 选项 含义 -a 显示启动每个进程对应的完整指令,包括启动进程的路径、参数等。 -c 不使用精简法显示进程信息,即显示的进程中包含子进
分析、api、re、web、功能测试、oasisengine、核心 分析sonar.sources=src/main analysis.sonar.tests=src/test analysis.sonar.binaries=target/classes analysis.sonar.junit.reportspath=target/surefire-reports analysis.sonar.
我正在使用jsTree显示一个树。我想选择树中可以使用的所有节点。这工作得很好。 但是,这将展开所有节点,并且拥有一个大树将把其余的内容一直往下推。 我想在检查所有节点后折叠树,但使用不起作用。 有人有办法解决吗?
我正在使用jstree来显示/管理一个类别树。我正在使用Ajax调用获取树,并返回以下响应: 我正在使用选项来呈现jstree: 我想记住用户所做的每个操作(打开或关闭任何树节点),因此我绑定了和操作。我遇到的问题是事件没有关于刚刚单击的节点的信息: 我想我错过了,但是jstree docs是相当糟糕的imho和大多数选项甚至没有提到...