最后一批的最后一批了吧应该是 一面 1.逮着研究的工作问(由于研究比较偏冷门,因此基本上就是一直在解释我的研究内容),倒是没有让推导论文里的公式,就是在纸上写写画画,帮助理解研究的内容 2.项目经历相关的提问,问做了哪些工作,稍稍深入问了一点点东西 3.有关随机信号的的一些基础知识(均值、方差之类的),由于研究内容涉及到信号处理的内容,所以非常简单,基本上学过的人都会 二面 1.也是主要针对研究工
补一下华子的面经 9.20 笔试 10.13 北京线下面试 一面 项目拷打 手撕判断一个正整数是不是完全平方数 二面 项目拷打×2 手撕一道dfs,大概就是在一个字母矩阵中按照给定的单词顺序在矩阵中上下左右搜索 三面 项目拷打×3 然后询问了在实验室项目分工如何做的,有没有跟导师出现冲突,怎么解决的,有没有觉得自己的项目做不下去的时候,怎么坚持下来的。 #24届软开秋招面试经验大赏#
一面 1、自我介绍 2、简历项目 3、手撕是一道力扣原题,牛顿迭代法开根号,这个题被考了好多次了 4、反问环节 二面 二面面试官主要侧重于C++和SLAM,包括: VINS-Mono如何进行初始化?如果是双目系统该如何进行初始化? 如果已知部分地图先验信息,该如何加入优化? VINS边缘化是怎么实现的? 手动推导旋转矩阵求导结果,SLAM十四讲上有推导过程 线程锁如何保证线程安全?#24届软开秋招
🕒 岗位/面试时间 高德打车机器学习算法 🤔 面试感受 太棒了吧,如沐春风,面试官人特好,特温和,还有正反馈 👥 面试题目 主要还是围绕项目,深挖项目,以及项目未来想做什么 其余就是基本深度学习知识,优化器,损失函数,标准化,模型结构,transformer,梯度反向传播,评价指标 手撕是很简单的dp
投的nlp算法(大模型方向) 一面3/19(40分钟) - 自我介绍+项目 - 简单介绍一下目前大语言模型的发展 - 简单介绍一下gpt,gpt1-4代知不知道有哪些不同 - 手撕1:力扣367. 有效的完全平方数(复杂度是多少) - 手撕2:力扣394. 字符串解码 二面3/21,两名面试官,一人问,一人听(40分钟) - 自我介绍+项目(稍微问得详细了一些,20分钟) - 没问八股 - 手撕1
已经oc, 发个面经为秋招攒攒人品 IEG,cv算法岗 一面(30min) 主要深挖简历上面的项目 然后面试官介绍了他们组里做的项目,问有没有思路 二面(30min) 与一面基本相同,深挖项目 同样介绍了组里做的项目,问什么时候可以到岗,可以实习多久 三面(45min) 挑了简历中感兴趣的一个项目让介绍 然后问了一些与技术之外的,兴趣爱好、遇到过什么困难,从中学习到什么等等 HR面(30min)
一面等了半个小时改时间了 一面 问经历相关的图神经网络的一些知识 怎么把图算法用到业务中(聊得挺开心的 八股内容: gbdt和lightgbm,xgboost的区别 梯度爆炸、梯度消失怎么办 算法题 数组连续最大和 通知一面结束完10分钟进行二面,结果等了一个多小时 hr跟我道歉说让我一天都在等,我寻思原来不是大家都这样啊 二面 优化的方法 激活函数 调参的方法 学校有什么机器学习课程 linux
20min介绍论文,实习经历 10min手撕easy旋转矩阵 10min做扔硬币概率期望 10min 闲聊 面完觉得自己砂疯了,坐等后续 一周后发现已回到人才库
codding环节 利用数组的最后一个数,作为分类标杆,把小于该数的数字放前面,大于该数的放后面。要求不能新建数组。 简历细挖,不是往深度思考的方向挖,而是更针对细节。扣的十分细节,总之,学到了很多东西。 部分提问如下 对比学习的思想? bert所有构件参数分析? 自注意力机制和多头自注意力机制的时间复杂度是多少? 自注意力流程说一下,每个小块都问了why? encoder部分中mlp怎么设置的,
面试官迟到半个多小时,上来先3个智力题: 1. abcd四个人过桥时间分别为10,5,2,1分钟,但是桥最多同时两个人通过。他们在晚上过河,必须照明,但只有1把火把,问什么方案过河时间最短? 先答了简单方案19分钟,让优化,想了半天说17分钟以及方案,让给出思考的思路过程,给出思路后反问,然后解释。 2. 口袋里有n种球,每种球数量无限,每次随机取出1个球,问n种球全部取出的所用次数的期望? 这个
上来自我介绍 然后介绍自己的研究课题 问课题中的难点是什么,答缩短时间,尝试Linux cuda加速, 问Linux中查看硬件占用的命令 yolov5做了哪些改进 多态和虚函数的作用 虚函数要不要重写 vector和数组的区别 vector是链表吗,数组是链表吗,如果是,是什么链表 介绍一下SVM C++代码最多写过多少行
一面(08.27 30min) 电话面试,是个很温柔的姐姐,基本上围绕着简历上问的,面完说约大概下周二或周三进行二面。 1. 自我介绍 2. 实习/项目 两个项目内容 在寒武纪的实习经历 3. 反问 反问知道目前部门是做助听器的,而我读研期间是做听诊器相关算法的,工作还是蛮匹配的。 二面(08.31 30min) 腾讯视频面试,记错了时间打电话重新协调了一下(很是感动),面试官是个很温柔的姐姐,问
一面 自我介绍 实习经历 手撕代码 一个递增数组(长度大于6),输出所有长度为6的递增子序列,例如: 输入:nums = [1, 2, 3, 3, 4, 5, ..., 100] 输出:[[1, 2, 3, 3, 4, 5], [1, 2, 3, 3, 4, 6], ..., [95, 96, 97, 98, 99, 100]] 场景题 给一系列LBS数据,包含各种POI以及时空信息,如何挖掘出某
部门:阿里集团-大淘宝-联盟技术 职位:算法工程师-机器学习 一面 手撕代码 写出opencv的cv2.GaussianBlur(img, (5, 5), 2, 2, cv2.BORDER_REFLECT),要求不使用python第三方库,做完要说一下步骤和思路。 自我介绍 实习经历 八股文 Vision Transformer的原理。 文本transformer和vision transform
11.2 一面 因为10月底才考,所以面的比较晚,怕忘了记录一下。 1. 介绍项目(非常详细)。 2. 用过哪些神经网络,有什么区别和特点(说ResNet的时候,从公式角度解释了一下问什么缓解梯度消失)。 3. 老生常谈,问了梯度消失和梯度爆炸。 4. 平常看论文吗,看论文能力如何。 5. 还有的简单的小知识记不清了。 6. 手撕(medium,电话号码的字母排列),大概12/3分钟左右写出来。