面试大概一个小时 1. 自我介绍 2. 说一段项目经历并深挖 3. 了解transformer吗,详细介绍encoder的结构,并说明为何需要position encoding 4. 了解堆排序吗,说说流程 5. 手撕最长上升子序列 6. 反问业务,说是大模型微调 全部答上来了,几乎没有答的不满意的地方。面试完秒挂。应该是方向不匹配。那为啥捞我?
二面特别快,大概不到20分钟 流程: 自我介绍 从哪里学习最新进展 对未来的规性格优点和缺点 课题组压力大不大,一般工作几点到几点 意向base 实习期间的收获 最大的挫折是什么,有哪些影响 然后戛然而止,都没有反问环节,感觉凉凉,可是我真的好想去荣耀啊,请问大家二面完一般多久状态码改变,挂了会通知吗 -------------- 更新一下,面完后10分钟左右变100437的录用决策了,听大家说这
投递的CV岗,C9本硕,low level方向,两篇A一作,无大厂实习 一面 主要在聊论文和项目 比较transformer和CNN的特点 了解哪些生成模型,stable diffusion的原理 手撕分类网络 面完当天约二面 二面 开场手撕海中岛屿数量 聊论文,问提出的方法可以继续应用到哪些领域 因为简历上基本上都是low level相关,所以继续问了对cv其它领域的了解 当天约三面 三面 面试
提前了半小时,我从才起床人都傻的,没想到突然从等候室进面试间了: 自我介绍然后就问了八股 对调优有什么了解吗?(人是懵的,居然答了bp传播,我佛了) 过拟合的原因,解决,现象(大概吧,我能记得一部分已经不容易了) 梯度爆炸、梯度消失怎么观察到,怎么解决之类的(我答了过拟合,不愧是我,我怎么就转到过拟合去了) 没了,说了声抱歉,然后和面试官说拜拜,一共三个,露脸的应该是负责记录的
9.4投递 9.8测评 9.12笔试 9.25一面 30分钟 两个面试官人超级好 先自我介绍,主要问了问项目/实习,深度学习算法、八股。 最后问有没有offer,期望工作城市(答上海),期望薪资(答20k-24k)(反问薪资结构)。 反问:部门主要工作内容,接下来的面试流程(说是几天内出结果) 上午十点面完,下午一点多就通知过了,二面约了明天,还是线下。
60min 问简历内容,问得很细 pca降维,原理,为什么要降维(简历上写了 为什么要归一化 项目怎么实现,用了什么模型 介绍了解的深度学习模型(cnn,rnn,resnet 介绍了解的机器学习模型(knn,svm,朴素贝叶斯 为什么选算法岗 手撕两个二进制数相加,给的两个二进制数是字符串 无反问(一个小时了还能问啥,赶紧放姐走
面完说不太符合…… 面试内容:30min 面试内容: * 自我介绍 * 华子项目介绍 * pytorch如何分析性能 * ddp如何优化多机多卡 * 分布式训练的batch * pytorch图优化 * pytorch2.0特性 * pytest有哪些参数 * pytorch如何根据yaml注册算子 * 系统级算子多平台测试 * 手里几个offer * 期望的base地 反问: * 框架相关的开发
1.hr问题 问了最大的挑战,喜欢什么样的leader,觉得国外和国内上学的区别,性格怎么样,周围人怎么评价你,有没有女朋友,女朋友怎么评价你,反正问了一堆性格,以及什么时候可以来 2.反问 组里氛围,转正策略,公司福利 第一次全部面完,开泡! hr说四月上统一发offer
👥面试题目 早上6点起来面试,脑子懵懵的😖 1.编程:序列化二叉树 2.队列和栈有什么区别 3.2D目标检测算法有哪些经典的,讲讲工作原理,优缺点对比 4.anchor 框是怎么选取的? 5.最新的 YOLO 算法有了解吗? 6.YOLO v3 v5 有使用过吗? 7.自注意力机制什么工作原理? 8.自注意力机制这么设计有什么优点? 9.transformer 中 QKV 是怎么得到的? 10
今天上午线上面的,20min速通,快得我一脸懵逼 1.自我介绍 2.简单问了论文(任务、难点、方法) 3.会C++吗(本科学过,不太熟) 4.做题(不限语言,我的题是字符串相关的,不算难,但是面试官只给10min,就有点慌,没完全做出来) 5.进vivo想从事哪方面工作 6.反问(忘记问一共几面了) 面试官很温柔随和,不过每个问题都没有细问,不知道是不是kpi面 后续:真的挂了,今晚就收到了感谢信
自我介绍 对推荐系统的了解:背景,前景,架构,方法 项目拷打:特征构建,模型选择,评价指标 论文拷打:背景,模型,评价指标 八股(都是从项目和论文中找的点):SVM原理及其推导,LR原理及其推导,XGBoost原理及其推导,XGBoost处理缺失值的方法,模型过拟合的处理方法, 手写:数组中前k个最小的数(类快排)
机器学习,电话面试45分钟 投了这么多阿里系总算有个面试 纯自学,研究与机器学习不相关,没论文。实习的时候算法一个都没给面试,那时候没算法的竞赛(只有华为杯国一),只有华子和宁德给面试了,华子一志愿算法没泡出来,被捞到通软,8月开始实习,5-8月狂打了5个算法的比赛,有个kaggle金牌,还有个进线下决赛了(运筹类的算法) 竞赛任务驱动学习,数据挖掘,运筹,图像分类,分割,只要比赛涉及都去接触了,
自我介绍 项目拷打 然后开始很多基础的问题: 手写Attention;其中dk的作用是什么? Transformer结构,多头公式,区别 讲解下RNN?与Transformer区别? 归一化作用,有哪些类别,为什么 Batch Normalization,公式? 为什么使用激活函数 梯度消失原因,为什么使用Relu, 特点,在0点是多少,与sigmoid区别? F1-sore公式,Precisi
自我介绍 实习经历详细介绍,讲了快30分钟 算法题:字符子串最大不重复字母数之和,手撕MLP 问了对于推荐算法的了解,我一无所知
8.3 一面 约45min 1.自我介绍 2.实习工作,ISP的流程,AWB和demosiac的顺序,Gamma和CCM顺序/为什么这样设计,如何实现的ISP参数自动化调试,LPIPS的网络结构,你的主要贡献是什么,说说你对AE的理解,运动曝光表是怎么做AE的 3.论文和项目,介绍一下创新点,你的具体的算法是怎么实现的,有没有用同样方法的论文。为什么用Unet,损失函数如何选择,为什么用GAN,d