一面/技术面 2024/7/30 下午14:00-15:00 面试官先介绍了一下部门的整体情况 自我介绍 介绍快手实习 介绍NIPS论文 如何把NIPS论文中的东西用到视频推荐中去呢 有没有其他应用场景 如果要预测一个视频未来的热度,怎么去做 介绍腾讯实习 如何构建的数据集? 怎么进行sft的 还了解哪些微调方式,LoRA LongLoRA QLoRA AdaLoRA 平时自己有没有构建promp
4.8的通知4.15线下开面,体验很好 两个面试官,总时长精准和预期45min一致 我很害怕,害怕面试官问的我答不出来 面试官好像也很害怕,害怕我答不出来 1. 个人介绍3-5min 2. 闲聊了句保研和成绩,问了下我导师放实习吗(楼主很实诚说不放,但能偷偷跑出来2-3个月) 3. 瞎扯了几下简历上的项目,被一眼看穿水,锐评到感觉像应付甲方的 4. 问了下基本技能,提了嘴python和shell
一面:上来面试官就先介绍工作内容,询问是否接受。然后就是自我介绍,介绍完之后面试官会就简历内容提问,提问内容都是比较贴合实际场景。最后就是coding,我抽到的是求点到直线的距离点排序。最后就是反问,具体的实习工作内容,全程时长1h左右。 一面整体感觉还是有点难度的,特别是coding部分对数学知识要求较高(可能是leetcode刷的不够多,太菜了) 二面:一面结束后两个工作日进行二面。二面主管面
2本车硕,通信专业,岗位是算法工程师。 4月中下旬投递 5.10下午1.30面试15min 1.自我介绍 2.讲讲你的项目(通信➕AI)这个原理是什么样,强化学习有哪些方法,输入是什么,reward是什么。 3.问了深度学习激活函数有哪些,说下你用的(relu),讲讲它的缺点(我好像多答了一个梯度不连续)。 反问:这个岗位的业务主要是什么?和公司主业的关系? 到现在19.43了还没消息,身边有人1
算法工程师-算法工程,部门:广告-反作弊 一面:HR面+技术面,时长大概1小时多点,HR面15-20分钟 HR面:略 技术面: c/c++代码片段问题: void fun(char* p) { p = (char*) malloc(100); } int main() { char* str = NULL; fun(str); strcpy(str, "hell
其实这个面试已经是二月份时候的事了,当时是春节期间投递的,快要秋招了,把手上的面经发一发,也希望大家点个关注 1 自我介绍 2 介绍科研: 你觉得point wise和list wise的区别是什么 为什么选这个模型做backbone 因果机器学习目前怎么做的 3 介绍实习: 为什么要多路召回 为什么要协同过滤,u2i和i2i的区别 为什么要在召回后过滤,有其他策略吗 双塔召回怎么做的 介绍一下l
一面5月31日: 问简历论文和竞赛,答视觉语言多模态和单,多目标跟踪知识。 算法题:算框的IoU,二分查找 二面6月7日: 开放问题模拟风控场景,如何在无标签情况下分辨风险数据,答聚类,异常检测等思路。 算法题:求k的n次方 三面主管面6月13日: 就简历无人机追踪讨论,如何实际落地,控制决策,硬件指标。答关于数据集设计,强化学习控制,Transformer剪枝相关,无算法题。 hr面6月14日:
来还愿了,希望友友都能拿到自己想要的offer 一面 1.自我介绍 2.代码:top K 3.代码:给一个链表,只反转从left到right内的元素,其余不变 4.问实习项目,没有挖的很深。 5.讲一讲序列建模的模型 6.为什么self-attention可以堆叠多层,有什么作用 7.多头有什么作用?如果想让不同头之间有交互,可以怎么做 8.讲一讲多目标优化,MMoE怎么设计?如果权重为1,0,0
部门:淘菜菜--用户算法(搜推团队) 5.05 一面 (电话面,时长47分钟) 1、自我介绍。 2、介绍一下项目。详细展开讲,大概25分钟。(围绕项目展开了八股内容以及有关项目理解方面的问题) 八股: 什么是过拟合? 有什么解决办法? BN和LN的区别是什么?LN适合什么场景? 梯度消失是什么? 图表示学习中,有没有考虑节点类别不均衡的问题? 图表示学习后怎么进行链接预测的? GCN的原理 以上是
9.11 时长正好60min 首先百度是给我最魔幻体验的公司了,因为一开始自己投了另一个也叫计算机视觉的岗,两天就共享中了,结果前几天自己变更了职位给自己捞进来面试了,自己最近疯狂被简历挂收到面试已经属于正反馈了,就冲这一点我这网盘大会员得永久续费了 然后第二点,自己今天的外出任务出了点意外导致不能按原定时间来,本来没报希望问了下HR,结果HR真给我沟通延迟了一小时!呜呜呜度子这恩情你让我怎么还啊
问题答案可关注公众号 机器学习算法面试,回复“资料”即可领取啦~~ 1.机器学习理论 1.1 数学知识 1.1.1 机器学习中的距离和相似度度量方式有哪些? 1.1.2 马氏距离比欧式距离的异同点? 1.1.3 张量与矩阵的区别? 1.1.4 如何判断矩阵为正定? 1.1.5 距离的严格定义? 1.1.6 参考 1.2 学习理论 1.2.1 什么是表示学习? 1.2.2 什么是端到端学习? 1.2
面试过程大概50多分钟,感觉比较凉的一面,拼多多11116工作强度。面试官周六还面试,看起来有点累的。 1、面试官首先介绍了自己的部门业务 2、做个自我介绍 3、让介绍项目,针对项目问了几个点 4、C++,数据结构是硕士阶段学的吗,机器学习什么时候学的(非科班感觉经常被问啊) 5、参加过什么社团 (技术面问这个是啥意思) 6、在班级里担任过什么职务 (问这个是为面试凑时间吗,) 7、说一下SVM算
1、自我介绍,完了之后面试官又介绍了他们在做的工作 2、问论文、项目内容 3、介绍transformer的结构;为什么要用多头;注意力有什么用等等 4、chatgpt了解吗,用过吗,聊了很多关于chatgpt这些大模型 5、写代码(给定两个字符串str1和str2,求字符串数组strs中str1和str2的最小距离) 6、反问:我问了去了以后做什么工作,偏项目还是科研#NLP#
面试时长:30min 面试内容: * 自我介绍 * 实习挨着问 * DP和DDP的原理区别 * 模型并行 * pytorch如何加快读取 * pytorch查看某一层的数据 * 装饰器原理 * 多机多卡 * 梯度消失和爆炸 * fast transformer * resnet的优势 * 做过哪些算法 * cuda核函数怎么优化 反问: * 一共三面