6.28 笔试 7.13 一面 一小时15分钟 1. 一个M*M的图像,用大小为K*K的卷积核做卷积,通道,步长为1,padding为0,计算卷积过程中乘法操作的次数 2. 什么是图像的直方图特征 3. 边缘检测的原理,流程 4. 分类问题和回归问题的区别 5. 什么是卷积的平移不变形,卷积是否具有旋转不变性 6. 反向传播如何实现的 7. CNN的流程及各个部分的作用 8. 设计或选择激活
上来自我介绍,然后让把实习、项目和竞赛都说一遍。没怎么问问题,就根据简历问了一两个简单的小问题。然后做题,本来说三道题,第一道过了,第二道的时候代码写完让自己测一下,结果我太菜了,构建二叉树构建了半天😂😂😂面试官说时间够了,今天就到这儿吧。 总结:我太菜了,建个树都不会。。#秋招##提前批##百度##算法岗#
阿里云算法二面凉经,本来以为还是业务面,没想到是主管面,猝不及防 1、面试官介绍自己和团队业务 2、自我介绍 3、问了一个本科的项目 4、为什么硕士和本科阶段的方向不一样,为什么想着换方向?(没答好,太实诚了。。。) 5、为什么选现在这个导师,实验室有哪些方向?(背景调查?) 6、有没有了解最新的一些领域的前沿进展?(简单讲了一下) 7、反问环节:面试后续流程 没有算法题,面试时间30多分钟,大部
面试岗位:算法工程师 面试时间:23/08/28 注:滴滴的面试流程比较独特,一天之内完成三轮技术面,没有hr面,每轮技术面的面试官基本不是同一组的人,谁有空谁来面,还挺神奇; 一面面试内容: 自我介绍 代表性实习经历介绍 机器学习八股有监督 vs 无监督过拟合L1、L2范数,Ln范数回归模型损失函数MSE、MAE、MAPE的公式分类模型评价指标:AUC计算公式、ROC曲线横纵坐标、如何绘制 深度
初筛完成进入面试 一面:53分钟,主要是介绍实习,项目,比赛,C++八股和python语法使用!每一个细节问的都比较细,我是从实习开始介绍,每一项都很细,面试官问的挺好,很专业, 我重点做的内容是:bevfusion模型训练加部署orin平台量化推理! 一面没有手撕 二面:34分钟,面试官是随即问的,有关深度学习,模型量化压缩都会问,手撕一道中等排序题,然后结束了! 总之面试感觉:挺好的
总时长45mins 1、拷打论文,因为课题跟小样本学习有关,问了问很多小样本学习的内容。 2、拷打项目和来源,回答是导师和公司合作的。 3、拷打实习,问得很细,比如包括遇到了什么难点,为什么要这么做不那么做。 3.1、为什么图像分类要减均值除方差,目标检测一般不需要。 3.2、怎么提高模型泛化性。 3.3、数据集怎么采集的。 3.4、模型不收敛的原因有哪些 反问有几面,答2技术面1个HR面。 有点
泡好久了,发发面经攒人品,许愿一个offer 一面 1. 八股文: vector emplace_back和push_back的区别?resize和reserve的区别?迭代器失效的情形?map和unordered_map的区别?编译器如何实现this指针绑定的?设计模式有了解吗? 2. 检查代码问题:一个野指针,一个空指针调用类成员函数; 3. 手撕代码:合并区间;最小栈。 面试官一上来就说,我
目前状态,10/16完成HR面 主要时间经过和进度 8/20提前二批投递简历 8/30完成测评 9/1完成笔试(有一说一长得跟期末考试试卷简直一毛一样,选择,填空,一道算法大题,基本都不难) 10/10完成专业面试(用时36min,应该是部门领导) 主要涉及:(不知道应该说简单还是,甚至面完我都以为是HR面,居然没有手撕代码也没有八股文) 1、自我介绍(基本都是我是谁,学过啥,学校啥项目,公司啥项
(为什么wxg一共有四轮技术面啊😅,麻了 teg一面挂后,被wxg捞起来了。 3.27一面 针对简历上的简历问了很多,包括一些技术细节和实现方法。八股考察了llm和传统nlp的知识 1.chatglm2与chatglm1做了哪些改进?是怎么训练的 2.微调以后的模型会出现什么问题?如何改进 3.llm的评测怎么做的 4.bert与GPT的区别?bert的pe是怎么做的? 5.bert怎么做预训练
一面时间:3月25日11:00 ~ 11:50 自我介绍 聊实习经历,根据实习经历问了几道八股: 简单介绍attention机制 有什么和self-attention不一样的注意力机制了解过吗 为什么要使用多头注意力 然后问了一些推荐场景的业务问题,结合自己的经历聊 最后算法题:3. 无重复字符的最长子串 面试官人很好,也没有问什么刁难的题,最后反问环节问了还有什么需要加强的也给我指导了许多,面试
芯原面试岗位是算法工程师,base是南京,流程是3轮技术面+2轮HR面+CEO面。我一开始没有收到测评,以为自己简历没过筛选或者笔试没通过,结果直接发面试通知了。 技术面:3轮技术面是一起完成的,每轮30min,会有不同部门的面试官来面试你,最后综合所有面试官的面评进行筛选。3轮面试官都是围绕项目展开提问的,其中有1个面试官是做图像处理的,不是很了解,因此我全程都在对项目里的一些算法进行讲解。 第
没挖项目,自我介绍完就是一问一答,然后手撕,然后反问组内方向,除此之外0互动
个人情况是双九小硕,一段AIGC强相关的项目,一段小厂实习,一篇2区一作 目前投了一些AIGC和多模态方面的算法岗,分享一下遇到的面经 不同厂之间有重复的问题我就不一一列举了 京东: 1. 围绕项目问了一些具体的技术路线和细节 2. DeepFloyd的结构+优势 3. classifer guidance和~-free guidance的区别&原理 聊的非常融洽,面完感觉比较match就给过了h
淘天aigc算法面经 2.24一面(50min) gan和diffusion区别 diffusion优劣 常见的采样方式及原理 ddim dpm++ lcm turbo sdxl相比sd的改进 详细分析了每个部分的改动意图 开放问题 sora diffusion3看法 如何训练达成精准文字生成? 问了一大堆项目 三十分钟左右 问得很细 会结合项目问相关算法原理 2.26 通知下午hr面
一面根据简历项目 开始深挖简历 中间询问是否了数学优化的经历 然后手撕代码(未出现的最小整数) 最后介绍业务,团队,还有hc的具体情况。 整体面试官谦虚,循循诱导。