我在Pandas中读取了一个SQL查询,虽然值是字符串、日期和整数,但它们是作为dtype“object”输入的。我能够将日期“对象”转换为datetime数据类型,但在尝试转换字符串和整数时出错。
以下是一个例子:
>>> import pandas as pd
>>> df = pd.read_sql_query('select * from my_table', conn)
>>> df
id date purchase
1 abc1 2016-05-22 1
2 abc2 2016-05-29 0
3 abc3 2016-05-22 2
4 abc4 2016-05-22 0
>>> df.dtypes
id object
date object
purchase object
dtype: object
将df['date']
转换为日期时间有效:
>>> pd.to_datetime(df['date'])
1 2016-05-22
2 2016-05-29
3 2016-05-22
4 2016-05-22
Name: date, dtype: datetime64[ns]
但我在尝试将df['purchase']
转换为整数时出错:
>>> df['purchase'].astype(int)
....
pandas/lib.pyx in pandas.lib.astype_intsafe (pandas/lib.c:16667)()
pandas/src/util.pxd in util.set_value_at (pandas/lib.c:67540)()
TypeError: long() argument must be a string or a number, not 'java.lang.Long'
注意:我得到一个类似的错误,当我尝试. astype('浮动')
当试图转换为字符串时,似乎什么也没有发生。
>>> df['id'].apply(str)
1 abc1
2 abc2
3 abc3
4 abc4
Name: id, dtype: object
这很简单
pd.factorize(df.purchase)[0]
例子:
labels, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'])`
labels
# array([0, 0, 1, 2, 0])
uniques
# array(['b', 'a', 'c'], dtype=object)
(自我)接受的答案没有考虑对象列中出现NAN的可能性。
df = pd.DataFrame({
'a': [1, 2, np.nan],
'b': [True, False, np.nan]}, dtype=object)
df
a b
0 1 True
1 2 False
2 NaN NaN
df['a'].astype(str).astype(int) # raises ValueError
这会阻塞,因为NaN被转换为字符串“NaN”,进一步强制转换为整数的尝试将失败。为了避免此问题,我们可以使用convert\u dtypes
将列软转换为相应的可为空类型:
df.convert_dtypes()
a b
0 1 True
1 2 False
2 <NA> <NA>
df.convert_dtypes().dtypes
a Int64
b boolean
dtype: object
如果您的数据中有垃圾文本混在您的int中,您可以使用pd.to_numeric
作为初始步骤:
s = pd.Series(['1', '2', '...'])
s.convert_dtypes() # converts to string, which is not what we want
0 1
1 2
2 ...
dtype: string
# coerces non-numeric junk to NaNs
pd.to_numeric(s, errors='coerce')
0 1.0
1 2.0
2 NaN
dtype: float64
# one final `convert_dtypes` call to convert to nullable int
pd.to_numeric(s, errors='coerce').convert_dtypes()
0 1
1 2
2 <NA>
dtype: Int64
根据@piRSquared的评论记录对我有效的答案。
我需要先转换成字符串,然后再转换成整数。
>>> df['purchase'].astype(str).astype(int)
问题内容: 我对熊猫有些陌生。我有一个熊猫数据框,它是1行乘23列。 我想将其转换为系列吗?我想知道最pythonic的方法是什么? 我试过了,但是抱怨。它不够聪明,无法意识到它仍然是数学上的“向量”。 谢谢! 问题答案: 它不够聪明,无法意识到它仍然是数学上的“向量”。 可以说它足够聪明,可以识别尺寸差异。:-) 我认为您可以做的最简单的事情是使用位置选择该行,这将为您提供一个Series,其列
我想读取ArcGIS形状文件的文件,并将其转储到数据帧中。我目前正在使用dbf包。 显然,我已经能够将文件作为一个表加载,但还不能理解如何解析它并将其转换为一个数据帧。怎么做? 这就是我所处的困境: Python将此语句作为输出返回,坦率地说,我不知道该如何处理: 编辑 我的原始示例:
我对熊猫有些陌生。我有一个熊猫数据框,是一行23列。 我想把它转换成一个系列?我想知道做这件事最像蟒蛇的方式是什么? 我试过pd。系列(我的结果),但它抱怨。它还没有聪明到意识到它仍然是数学术语中的“向量”。 谢谢!
问题内容: 我已经读过一个对Pandas的SQL查询,并且值以dtype’object’的形式出现,尽管它们是字符串,日期和整数。我能够将日期“ object”转换为Pandas datetime dtype,但是在尝试转换字符串和整数时遇到错误。 这是一个例子: 将转换为日期时间可以: 但是尝试将转换为整数时出现错误: 注意:我尝试时遇到类似的错误 当尝试转换为字符串时,似乎什么也没有发生。 问
问题内容: 我有以下熊猫数据框: 我想将日期时间索引转换为数据框的列。我尝试过,但结果没有改变。任何想法? 问题答案: 需要分配输出或参数:
问题内容: 我有一个熊猫数据框,其中一列包含格式为日期的字符串 例如 目前该列的是。 如何将列值转换为Pandas日期格式? 问题答案: 使用类型