当前位置: 首页 > 知识库问答 >
问题:

错误概率函数

梁成双
2023-03-14

我有碱基错配的DNA扩增子,这可能会在PCR扩增过程中出现。我感兴趣的是,给定每个碱基的错误率、错配数和扩增子中碱基的数量,序列包含错误的概率是多少。

我偶然看到一篇文章[Cummings,S.M.et al(2010).群体遗传分析中PCR、克隆和测序错误的解决方案.保守遗传学,11(3),1095-1097.DOI:10.1007/S10592-009-9864-6]提出了在这种情况下计算概率质量函数的公式。

我用R实现了这个公式,如下所示

pcr.prob <- function(k,N,eps){
  v = numeric(k)
  for(i in 1:k) {
    v[i] = choose(N,k-i) * (eps^(k-i)) * (1 - eps)^(N-(k-i))
    }
  1 - sum(v)
}
pcr.prob(3,800,0.0000185)
[1] 5.323567e-07

谢谢

共有1个答案

姜志
2023-03-14

我认为他们得到了正确的数字(0.00113),但在他们的论文中解释得很糟糕。

您要做的计算是:

pbinom(3, 800, 1-(1-1.85e-5)^30, lower=FALSE)

即。在800个独立的碱基中,如果有30个扩增,每个扩增有1.85E-5出错的几率,那么看到少于三个修改的概率是多少。即。你在计算它30次都不正确的概率。

pbinom(3, 800, 1-exp(log1p(-1.85e-5)*30), lower=FALSE)
 类似资料:
  • 问题内容: Python是否有标准函数根据输入的0到1之间的随机数概率输出True或False? 我的意思的例子: 上面的示例中,如果输入0.7,将以70%的概率返回True,以30%的概率返回false 问题答案:

  • 在概率公理中,我们建立了“概率测度”的概念,并使用“面积”来类比。这是对概率的第一步探索。为了让概率这个工具更加有用,数学家进一步构筑了“条件概率”,来深入探索概率中包含的数学结构。我们可以考虑生活中常见的一个估计: 三个公司开发一块地。A占地20%,B占地30%,C占地50%。三个公司规划的绿地占比不同:A土地中40%规划为绿地,B土地中的30%规划为绿地,C土地中的10%规划为绿地。我想选择绿

  • 概率论早期用于研究赌博中的概率事件。赌徒对于结果的判断基于直觉,但高明的赌徒尝试从理性的角度来理解。然而,赌博中的一些结果似乎有矛盾。比如掷一个骰子,每个数字出现的概率相等,都是1/6。然而,如果有两个骰子,那么出现的2到12这些数字的概率却不相同。概率论这门学科正是为了搞清楚这些矛盾背后的原理。 早期的概率论是一门混合了经验的数学学科,并没有严格的用语。因此,概率论在数学的精密架构下,显得有些异

  • 面试时如果被问了一个概率题,那就要小心了,面试官可能要刷人了! 面试概率题的特点: 题面不复杂 短时间可以解答 会者不难 RoadMap 概率论基础 TODO 常见面试题 古典概型 在一个有限的集合 S 中随机抽取一个元素,求该元素属于子集 T 的概率; 概率 p = 子集 T 中元素的数量 / 集合 S 中元素的数量 示例: 一枚均匀的骰子掷到 1 的概率: S = {1,2,3

  • 我们重新回到对单随机变量分布的研究。描述量是从分布中提取出的一个数值,用来表示分布的某个特征。之前使用了两个描述量,即期望和方差。在期望和方差之外,还有其它的描述量吗? 斜度 值得思考的是,期望和方差足以用来描述一个分布吗?如果答案是可以,那么我们就没有必要寻找其它描述量的。事实上,这两个描述量并不足以完整的描述一个分布。 我们来看两个分布,一个是指数分布: $$f(x) = \left\{ \b

  • 随机变量的函数 在前面的文章中,我先将概率值分配给各个事件,得到事件的概率分布。 通过事件与随机变量的映射,让事件“数值化”,事件的概率值转移到随机变量上,获得随机变量的概率分布。 我们使用随机变量的函数,来定制新的随机变量。随机变量的函数是从旧有的随机变量到一个新随机变量的映射。通过函数的映射功能,原有随机变量对应新的随机变量。通过原有随机变量的概率分布,我们可以获知新随机变量的概率分布。事件,