二项分布模型用于找出事件成功的概率,该事件在一系列实验中仅具有两种可能的结果。 例如,投掷硬币总是给出头部或尾部。 在二项分布期间估计在重复投掷硬币10次时准确找到3个头的概率。
我们使用具有内置函数的seaborn python库来创建这样的概率分布图。 此外,scipy包有助于创建二项分布。
from scipy.stats import binom
import seaborn as sb
binom.rvs(size=10,n=20,p=0.8)
data_binom = binom.rvs(n=20,p=0.8,loc=0,size=1000)
ax = sb.distplot(data_binom,
kde=True,
color='blue',
hist_kws={"linewidth": 25,'alpha':1})
ax.set(xlabel='Binomial', ylabel='Frequency')
其output如下 -