python实现

优质
小牛编辑
124浏览
2023-12-01

ID3算法python实现

数据集来源《机器学习实战》:https://github.com/apachecn/MachineLearning/blob/master/input/3.DecisionTree/lenses.txt

young    myope    no    reduced    no lenses
young    myope    no    normal    soft
young    myope    yes    reduced    no lenses
young    myope    yes    normal    hard
young    hyper    no    reduced    no lenses
young    hyper    no    normal    soft
young    hyper    yes    reduced    no lenses
young    hyper    yes    normal    hard
pre    myope    no    reduced    no lenses
pre    myope    no    normal    soft
pre    myope    yes    reduced    no lenses
pre    myope    yes    normal    hard
pre    hyper    no    reduced    no lenses
pre    hyper    no    normal    soft
pre    hyper    yes    reduced    no lenses
pre    hyper    yes    normal    no lenses
presbyopic    myope    no    reduced    no lenses
presbyopic    myope    no    normal    no lenses
presbyopic    myope    yes    reduced    no lenses
presbyopic    myope    yes    normal    hard
presbyopic    hyper    no    reduced    no lenses
presbyopic    hyper    no    normal    soft
presbyopic    hyper    yes    reduced    no lenses
presbyopic    hyper    yes    normal    no lenses

数据集的特征从左到右为 ['age', 'prescript', 'astigmatic', 'tearRate'],最后一个为类别,类别包含三种类型['no lenses', 'hard', 'soft' ]。

基本思路:构建一个树形结构的输出,选择信息增益最大的特征作为节点,非叶子节点都是特征,节点上的特征将数据集分成各个子集,然后再递归。

# -*- coding: utf-8 -*-

from math import log
from collections import Counter

class DecisionTree(object):
    def __init__(self, input_data, labels):
        pass

    def create_decision_tree(self, data_set, labels): # 输出树形结构
        class_list = [data[-1] for data in data_set]
        if class_list.count(class_list[0]) == len(class_list): # 如果剩下的数据集的类别都一样
            return class_list[0]
        if len(data_set[0]) == 1:                              # 如果数据集没有特征,只剩下类别,选择类别最多的输出
            major_label = Counter(data_set).most_common(1)[0]
            return major_label

        feature_index = self.get_feature_with_biggest_gain(data_set, labels) # 获取最大信息增益的特征
        feature_name = labels[feature_index]
        del labels[feature_index]

        feature_set = set([ data[feature_index] for data in data_set ]) # 找到该特征的所有可能取值
        decision_tree = {feature_name: {}}
        for i in feature_set: 
        # 遍历该特征的所有取值,将数据集分割成各个子集,然后递归对各个子集进行同样的特征选择
            feature_data_list = [ data for data in data_set if data[feature_index] == i ] # 满足
            new_data_list = []
            for j in feature_data_list: # 移除已经选择的特征,获取子集
                new_data = j[:]
                del new_data[feature_index]
                new_data_list.append(new_data)
            #print(i, new_data_list)
            new_lables = labels[:]
            decision_tree[feature_name][i] = self.create_decision_tree(new_data_list, new_lables)

        return decision_tree

    def cal_data_set_entropy(self, data_set): # 计算数据集的经验熵
        total_num = len(data_set)
        class_list = [data[-1] for data in data_set]
        class_dict = dict()
        for i in class_list:
            ck_num = class_dict.get(i, 0)
            class_dict[i] = ck_num + 1

        entropy = 0
        for k in class_dict:
            ck_rate = float(class_dict[k])/total_num
            entropy -= ck_rate * log(ck_rate, 2)
        return entropy

    def get_feature_with_biggest_gain(self, data_set, labels): #获取最大信息增益的特征
        feature_num = len(labels)
        data_entropy = self.cal_data_set_entropy(data_set)
        biggest_gain_index = None
        biggest_gain = 0
        for i in range(feature_num):
        # 遍历所有特征,找出最大的信息增益特征
            condition_entroy = self.cal_feature_condition_entropy(data_set, i)
            gain = data_entropy - condition_entroy
            if gain > biggest_gain:
                biggest_gain_index = i
                biggest_gain = gain
        #print(labels[biggest_gain_index], biggest_gain)
        return biggest_gain_index

    def cal_feature_condition_entropy(self, data_set, index): # 计算某个特征的条件熵
        total_num = len(data_set)
        feature_list = [data[index] for data in data_set]
        feature_dict = dict()
        for i in feature_list:
            feature_num = feature_dict.get(i, 0)
            feature_dict[i] = feature_num + 1

        condition_entropy = 0
        for k in feature_dict:
            feature_rate = float(feature_dict[k])/total_num
            feature_data_set = [data for data in data_set if data[index] == k]
            entropy = self.cal_data_set_entropy(feature_data_set)
            condition_entropy += feature_rate * entropy
        return condition_entropy

train_data = "*/input/3.DecisionTree/lenses.txt"
with open(train_data) as f:
    lenses = [line.strip().split('\t') for line in f.readlines()] # 特征之间用tab键隔离开
    labels = ['age', 'prescript', 'astigmatic', 'tearRate']

#[['young', 'myope', 'no', 'reduced', 'no lenses'], 
# ['young', 'myope', 'no', 'normal',  'soft']
dTree = DecisionTree(lenses, labels)
print(dTree.create_decision_tree(lenses, labels))
{'tearRate': {'reduced': 'no lenses', 
              'normal': {'astigmatic': {'yes': {'prescript': {'hyper': {'age': {'pre': 'no lenses', 
                                                                                'presbyopic': 'no lenses', 
                                                                                'young': 'hard'}}, 
                                                              'myope': 'hard'}}, 
                                        'no': {'age': {'pre': 'soft', 
                                                       'presbyopic': {'prescript': {'hyper': 'soft', 
                                                                      'myope': 'no lenses'}}, 
                                                       'young': 'soft'}}
                                        }
                        }
             }
}

如果画成树形结构:

树形结构代码参考:https://github.com/apachecn/MachineLearning/blob/master/src/py3.x/3.DecisionTree/decisionTreePlot.py