8. 大数据与机器学习 - Spark
Kubernetes 从 v1.8 开始支持原生的Apache Spark应用(需要Spark支持Kubernetes,比如v2.2.0-kubernetes-0.4.0),可以通过 spark-submit
命令直接提交Kubernetes任务。比如计算圆周率
bin/spark-submit
--deploy-mode cluster
--class org.apache.spark.examples.SparkPi
--master k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port>
--kubernetes-namespace default
--conf spark.executor.instances=5
--conf spark.app.name=spark-pi
--conf spark.kubernetes.driver.docker.image=kubespark/spark-driver:v2.2.0-kubernetes-0.4.0
--conf spark.kubernetes.executor.docker.image=kubespark/spark-executor:v2.2.0-kubernetes-0.4.0
local:///opt/spark/examples/jars/spark-examples_2.11-2.2.0-k8s-0.4.0.jar
或者使用Python版本
bin/spark-submit
--deploy-mode cluster
--master k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port>
--kubernetes-namespace <k8s-namespace>
--conf spark.executor.instances=5
--conf spark.app.name=spark-pi
--conf spark.kubernetes.driver.docker.image=kubespark/spark-driver-py:v2.2.0-kubernetes-0.4.0
--conf spark.kubernetes.executor.docker.image=kubespark/spark-executor-py:v2.2.0-kubernetes-0.4.0
--jars local:///opt/spark/examples/jars/spark-examples_2.11-2.2.0-k8s-0.4.0.jar
--py-files local:///opt/spark/examples/src/main/python/sort.py
local:///opt/spark/examples/src/main/python/pi.py 10
Spark on Kubernetes部署
Kubernetes 示例github上提供了一个详细的spark部署方法,由于步骤复杂,这里简化一些部分让大家安装的时候不用去多设定一些东西。
部署条件
- 一个kubernetes群集,可参考集群部署
- kube-dns正常运作
创建一个命名空间
namespace-spark-cluster.yaml
apiVersion: v1
kind: Namespace
metadata:
name: "spark-cluster"
labels:
name: "spark-cluster"
$ kubectl create -f examples/staging/spark/namespace-spark-cluster.yaml
这边原文提到需要将kubectl的执行环境转到spark-cluster,这边为了方便我们不这样做,而是将之后的佈署命名空间都加入spark-cluster
部署Master Service
建立一个replication controller,来运行Spark Master服务
kind: ReplicationController
apiVersion: v1
metadata:
name: spark-master-controller
namespace: spark-cluster
spec:
replicas: 1
selector:
component: spark-master
template:
metadata:
labels:
component: spark-master
spec:
containers:
- name: spark-master
image: gcr.io/google_containers/spark:1.5.2_v1
command: ["/start-master"]
ports:
- containerPort: 7077
- containerPort: 8080
resources:
requests:
cpu: 100m
$ kubectl create -f spark-master-controller.yaml
创建master服务
spark-master-service.yaml
kind: Service
apiVersion: v1
metadata:
name: spark-master
namespace: spark-cluster
spec:
ports:
- port: 7077
targetPort: 7077
name: spark
- port: 8080
targetPort: 8080
name: http
selector:
component: spark-master
$ kubectl create -f spark-master-service.yaml
检查Master 是否正常运行
$ kubectl get pod -n spark-cluster
spark-master-controller-qtwm8 1/1 Running 0 6d
$ kubectl logs spark-master-controller-qtwm8 -n spark-cluster
17/08/07 02:34:54 INFO Master: Registered signal handlers for [TERM, HUP, INT]
17/08/07 02:34:54 INFO SecurityManager: Changing view acls to: root
17/08/07 02:34:54 INFO SecurityManager: Changing modify acls to: root
17/08/07 02:34:54 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root)
17/08/07 02:34:55 INFO Slf4jLogger: Slf4jLogger started
17/08/07 02:34:55 INFO Remoting: Starting remoting
17/08/07 02:34:55 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkMaster@spark-master:7077]
17/08/07 02:34:55 INFO Utils: Successfully started service 'sparkMaster' on port 7077.
17/08/07 02:34:55 INFO Master: Starting Spark master at spark://spark-master:7077
17/08/07 02:34:55 INFO Master: Running Spark version 1.5.2
17/08/07 02:34:56 INFO Utils: Successfully started service 'MasterUI' on port 8080.
17/08/07 02:34:56 INFO MasterWebUI: Started MasterWebUI at http://10.2.6.12:8080
17/08/07 02:34:56 INFO Utils: Successfully started service on port 6066.
17/08/07 02:34:56 INFO StandaloneRestServer: Started REST server for submitting applications on port 6066
17/08/07 02:34:56 INFO Master: I have been elected leader! New state: ALIVE
若master 已经被建立与运行,我们可以透过Spark开发的webUI来察看我们spark的群集状况,我们将佈署specialized proxy
spark-ui-proxy-controller.yaml
kind: ReplicationController
apiVersion: v1
metadata:
name: spark-ui-proxy-controller
namespace: spark-cluster
spec:
replicas: 1
selector:
component: spark-ui-proxy
template:
metadata:
labels:
component: spark-ui-proxy
spec:
containers:
- name: spark-ui-proxy
image: elsonrodriguez/spark-ui-proxy:1.0
ports:
- containerPort: 80
resources:
requests:
cpu: 100m
args:
- spark-master:8080
livenessProbe:
httpGet:
path: /
port: 80
initialDelaySeconds: 120
timeoutSeconds: 5
$ kubectl create -f spark-ui-proxy-controller.yaml
提供一个service做存取,这边原文是使用LoadBalancer type,这边我们改成NodePort,如果你的kubernetes运行环境是在cloud provider,也可以参考原文作法
spark-ui-proxy-service.yaml
kind: Service
apiVersion: v1
metadata:
name: spark-ui-proxy
namespace: spark-cluster
spec:
ports:
- port: 80
targetPort: 80
nodePort: 30080
selector:
component: spark-ui-proxy
type: NodePort
$ kubectl create -f spark-ui-proxy-service.yaml
部署完后你可以利用kubecrl proxy来察看你的Spark群集状态
$ kubectl proxy --port=8001
可以透过http://localhost:8001/api/v1/proxy/namespaces/spark-cluster/services/spark-master:8080
察看,若kubectl中断就无法这样观察了,但我们再先前有设定nodeport
所以也可以透过任意台node的端口30080去察看
例如:http://10.201.2.34:30080
10.201.2.34是群集的其中一台node,这边可换成你自己的
部署 Spark workers
要先确定Matser是再运行的状态
spark-worker-controller.yaml
kind: ReplicationController
apiVersion: v1
metadata:
name: spark-worker-controller
namespace: spark-cluster
spec:
replicas: 2
selector:
component: spark-worker
template:
metadata:
labels:
component: spark-worker
spec:
containers:
- name: spark-worker
image: gcr.io/google_containers/spark:1.5.2_v1
command: ["/start-worker"]
ports:
- containerPort: 8081
resources:
requests:
cpu: 100m
$ kubectl create -f spark-worker-controller.yaml
replicationcontroller "spark-worker-controller" created
透过指令察看运行状况
$ kubectl get pod -n spark-cluster
spark-master-controller-qtwm8 1/1 Running 0 6d
spark-worker-controller-4rxrs 1/1 Running 0 6d
spark-worker-controller-z6f21 1/1 Running 0 6d
spark-ui-proxy-controller-d4br2 1/1 Running 4 6d
也可以透过上面建立的WebUI服务去察看
基本上到这边Spark的群集已经建立完成了
创建 Zeppelin UI
我们可以利用Zeppelin UI经由web notebook直接去执行我们的任务,
详情可以看Zeppelin UI与 Spark architecture
zeppelin-controller.yaml
kind: ReplicationController
apiVersion: v1
metadata:
name: zeppelin-controller
namespace: spark-cluster
spec:
replicas: 1
selector:
component: zeppelin
template:
metadata:
labels:
component: zeppelin
spec:
containers:
- name: zeppelin
image: gcr.io/google_containers/zeppelin:v0.5.6_v1
ports:
- containerPort: 8080
resources:
requests:
cpu: 100m
$ kubectl create -f zeppelin-controller.yaml
replicationcontroller "zeppelin-controller" created
然后一样佈署Service
zeppelin-service.yaml
kind: Service
apiVersion: v1
metadata:
name: zeppelin
namespace: spark-cluster
spec:
ports:
- port: 80
targetPort: 8080
nodePort: 30081
selector:
component: zeppelin
type: NodePort
$ kubectl create -f zeppelin-service.yaml
可以看到我们把NodePort设再30081,一样可以透过任意台node的30081 port 访问 zeppelin UI。
通过命令行访问pyspark(记得把pod名字换成你自己的):
$ kubectl exec -it zeppelin-controller-8f14f -n spark-cluster pyspark
Python 2.7.9 (default, Mar 1 2015, 12:57:24)
[GCC 4.9.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
17/08/14 01:59:22 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.
Welcome to
____ __
/ __/__ ___ _____/ /__
_ / _ / _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_ version 1.5.2
/_/
Using Python version 2.7.9 (default, Mar 1 2015 12:57:24)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
接着就能使用Spark的服务了,如有错误欢迎更正。
zeppelin常见问题
- zeppelin的镜像非常大,所以再pull时会花上一些时间,而size大小的问题现在也正在解决中,详情可参考 issue #17231
- 在GKE的平台上,
kubectl post-forward
可能有些不稳定,如果你看现zeppelin 的状态为Disconnected
,port-forward
可能已经失败你需要去重新启动它,详情可参考 #12179