8 损失函数 Losses
优质
小牛编辑
133浏览
2023-12-01
损失函数的使用
损失函数(或称目标函数、优化评分函数)是编译模型时所需的两个参数之一:
model.compile(loss='mean_squared_error', optimizer='sgd')
from keras import losses
model.compile(loss=losses.mean_squared_error, optimizer='sgd')
你可以传递一个现有的损失函数名,或者一个 TensorFlow/Theano 符号函数。 该符号函数为每个数据点返回一个标量,有以下两个参数:
- y_true: 真实标签。TensorFlow/Theano 张量。
- y_pred: 预测值。TensorFlow/Theano 张量,其 shape 与 y_true 相同。
实际的优化目标是所有数据点的输出数组的平均值。
有关这些函数的几个例子,请查看 losses source。
可用损失函数
mean_squared_error
keras.losses.mean_squared_error(y_true, y_pred)
mean_absolute_error
eras.losses.mean_absolute_error(y_true, y_pred)
mean_absolute_percentage_error
keras.losses.mean_absolute_percentage_error(y_true, y_pred)
mean_squared_logarithmic_error
keras.losses.mean_squared_logarithmic_error(y_true, y_pred)
squared_hinge
keras.losses.squared_hinge(y_true, y_pred)
hinge
keras.losses.hinge(y_true, y_pred)
categorical_hinge
keras.losses.categorical_hinge(y_true, y_pred)
logcosh
keras.losses.logcosh(y_true, y_pred)
预测误差的双曲余弦的对数。
对于小的 x
,log(cosh(x))
近似等于 (x ** 2) / 2
。对于大的 x
,近似于 abs(x) - log(2)
。这表示 'logcosh' 与均方误差大致相同,但是不会受到偶尔疯狂的错误预测的强烈影响。
参数
- y_true: 目标真实值的张量。
- y_pred: 目标预测值的张量。
返回
每个样本都有一个标量损失的张量。
huber_loss
keras.losses.huber_loss(y_true, y_pred, delta=1.0)
categorical_crossentropy
keras.losses.categorical_crossentropy(y_true, y_pred, from_logits=False, label_smoothing=0)
sparse_categorical_crossentropy
keras.losses.sparse_categorical_crossentropy(y_true, y_pred, from_logits=False, axis=-1)
binary_crossentropy
keras.losses.binary_crossentropy(y_true, y_pred, from_logits=False, label_smoothing=0)
kullback_leibler_divergence
keras.losses.kullback_leibler_divergence(y_true, y_pred)
poisson
keras.losses.poisson(y_true, y_pred)
cosine_proximity
keras.losses.cosine_proximity(y_true, y_pred, axis=-1)
is_categorical_crossentropy
keras.losses.is_categorical_crossentropy(loss)
注意: 当使用 categorical_crossentropy
损失时,你的目标值应该是分类格式 (即,如果你有 10 个类,每个样本的目标值应该是一个 10 维的向量,这个向量除了表示类别的那个索引为 1,其他均为 0)。 为了将 整数目标值 转换为 分类目标值,你可以使用 Keras 实用函数 to_categorical
:
from keras.utils.np_utils import to_categorical
categorical_labels = to_categorical(int_labels, num_classes=None)
当使用 sparse_categorical_crossentropy 损失时,你的目标应该是整数。如果你是类别目标,应该使用 categorical_crossentropy。
categorical_crossentropy 是多类对数损失的另一种形式。