目录
当前位置: 首页 > 教程 > TensorFlow >

TensorFlow单词嵌入

精华
小牛编辑
132浏览
2023-03-14

Word嵌入是从单词之类的离散对象到向量和实数的映射的概念。对于机器学习的输入很重要。该概念包括标准函数,它有效地将离散输入对象转换为有用的向量。

单词嵌入输入的示例说明如下所示 -

blue: (0.01359, 0.00075997, 0.24608, ..., -0.2524, 1.0048, 0.06259)
blues: (0.01396, 0.11887, -0.48963, ..., 0.033483, -0.10007, 0.1158)
orange: (-0.24776, -0.12359, 0.20986, ..., 0.079717, 0.23865, -0.014213)
oranges: (-0.35609, 0.21854, 0.080944, ..., -0.35413, 0.38511, -0.070976)

Word2vec

Word2vec是用于无监督字嵌入技术的最常用方法。它以这样的方式训练模型:给定的输入词通过使用skip-gram来预测单词的上下文。

TensorFlow通过多种方式实现这种模型,提高了复杂程度和优化水平,并使用多线程概念和更高级别的抽象。

import os 
import math 
import numpy as np 
import tensorflow as tf 

from tensorflow.contrib.tensorboard.plugins import projector 
batch_size = 64 
embedding_dimension = 5 
negative_samples = 8 
LOG_DIR = "logs/word2vec_intro" 

digit_to_word_map = {
   1: "One", 
   2: "Two", 
   3: "Three", 
   4: "Four", 
   5: "Five", 
   6: "Six", 
   7: "Seven", 
   8: "Eight", 
   9: "Nine"} 
sentences = [] 

# Create two kinds of sentences - sequences of odd and even digits. 
   for i in range(10000): 
   rand_odd_ints = np.random.choice(range(1, 10, 2), 3) 
      sentences.append(" ".join([digit_to_word_map[r] for r in rand_odd_ints])) 
   rand_even_ints = np.random.choice(range(2, 10, 2), 3) 
      sentences.append(" ".join([digit_to_word_map[r] for r in rand_even_ints])) 

# Map words to indices
word2index_map = {} 
index = 0 

for sent in sentences: 
   for word in sent.lower().split(): 

   if word not in word2index_map: 
      word2index_map[word] = index 
      index += 1 
index2word_map = {index: word for word, index in word2index_map.items()} 

vocabulary_size = len(index2word_map) 

# Generate skip-gram pairs 
skip_gram_pairs = [] 

for sent in sentences: 
   tokenized_sent = sent.lower().split() 

   for i in range(1, len(tokenized_sent)-1):        
      word_context_pair = [[word2index_map[tokenized_sent[i-1]], 
         word2index_map[tokenized_sent[i+1]]], word2index_map[tokenized_sent[i]]] 

      skip_gram_pairs.append([word_context_pair[1], word_context_pair[0][0]]) 
      skip_gram_pairs.append([word_context_pair[1], word_context_pair[0][1]]) 

def get_skipgram_batch(batch_size): 
   instance_indices = list(range(len(skip_gram_pairs))) 
      np.random.shuffle(instance_indices)
   batch = instance_indices[:batch_size] 
   x = [skip_gram_pairs[i][0] for i in batch] 
   y = [[skip_gram_pairs[i][1]] for i in batch] 
   return x, y 

# batch example 
x_batch, y_batch = get_skipgram_batch(8) 
x_batch 
y_batch 
[index2word_map[word] for word in x_batch] [index2word_map[word[0]] for word in y_batch] 

# Input data, labels train_inputs = tf.placeholder(tf.int32, shape = [batch_size]) 
   train_labels = tf.placeholder(tf.int32, shape = [batch_size, 1]) 

# Embedding lookup table currently only implemented in CPU with 
   tf.name_scope("embeddings"): 
   embeddings = tf.Variable(    
      tf.random_uniform([vocabulary_size, embedding_dimension], -1.0, 1.0), 
         name = 'embedding') 
   # This is essentialy a lookup table 
   embed = tf.nn.embedding_lookup(embeddings, train_inputs) 

# Create variables for the NCE loss
nce_weights = tf.Variable(     
   tf.truncated_normal([vocabulary_size, embedding_dimension], stddev = 1.0 / 
      math.sqrt(embedding_dimension))) 

nce_biases = tf.Variable(tf.zeros([vocabulary_size])) 

loss = tf.reduce_mean(     
   tf.nn.nce_loss(weights = nce_weights, biases = nce_biases, inputs = embed, 
   labels = train_labels,num_sampled = negative_samples, 
   num_classes = vocabulary_size)) tf.summary.scalar("NCE_loss", loss) 

# Learning rate decay 
global_step = tf.Variable(0, trainable = False) 
   learningRate = tf.train.exponential_decay(learning_rate = 0.1, 
   global_step = global_step, decay_steps = 1000, decay_rate = 0.95, staircase = True) 

train_step = tf.train.GradientDescentOptimizer(learningRate).minimize(loss) 
   merged = tf.summary.merge_all() 
with tf.Session() as sess: 
   train_writer = tf.summary.FileWriter(LOG_DIR,    
      graph = tf.get_default_graph()) 
   saver = tf.train.Saver() 

   with open(os.path.join(LOG_DIR, 'metadata.tsv'), "w") as metadata: 
      metadata.write('Name\tClass\n') for k, v in index2word_map.items(): 
      metadata.write('%s\t%d\n' % (v, k)) 

   config = projector.ProjectorConfig() 
   embedding = config.embeddings.add() embedding.tensor_name = embeddings.name 

   # Link this tensor to its metadata file (e.g. labels). 
   embedding.metadata_path = os.path.join(LOG_DIR, 'metadata.tsv') 
      projector.visualize_embeddings(train_writer, config) 

   tf.global_variables_initializer().run() 

   for step in range(1000): 
      x_batch, y_batch = get_skipgram_batch(batch_size) summary, _ = sess.run(
         [merged, train_step], feed_dict = {train_inputs: x_batch, train_labels: y_batch})
      train_writer.add_summary(summary, step)

      if step % 100 == 0:
         saver.save(sess, os.path.join(LOG_DIR, "w2v_model.ckpt"), step)
         loss_value = sess.run(loss, feed_dict = {
            train_inputs: x_batch, train_labels: y_batch})
         print("Loss at %d: %.5f" % (step, loss_value))

   # Normalize embeddings before using
   norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims = True))
   normalized_embeddings = embeddings /
      norm normalized_embeddings_matrix = sess.run(normalized_embeddings)

ref_word = normalized_embeddings_matrix[word2index_map["one"]]

cosine_dists = np.dot(normalized_embeddings_matrix, ref_word)
ff = np.argsort(cosine_dists)[::-1][1:10] for f in ff: print(index2word_map[f])
print(cosine_dists[f])

上面的代码生成以下输出 -