个人情况是双九小硕,一段AIGC强相关的项目,一段小厂实习,一篇2区一作 目前投了一些AIGC和多模态方面的算法岗,分享一下遇到的面经 不同厂之间有重复的问题我就不一一列举了 京东: 1. 围绕项目问了一些具体的技术路线和细节 2. DeepFloyd的结构+优势 3. classifer guidance和~-free guidance的区别&原理 聊的非常融洽,面完感觉比较match就给过了h
淘天aigc算法面经 2.24一面(50min) gan和diffusion区别 diffusion优劣 常见的采样方式及原理 ddim dpm++ lcm turbo sdxl相比sd的改进 详细分析了每个部分的改动意图 开放问题 sora diffusion3看法 如何训练达成精准文字生成? 问了一大堆项目 三十分钟左右 问得很细 会结合项目问相关算法原理 2.26 通知下午hr面
一面(八月四号) 面试官人很好,很温和,挺会引导的 问了论文和科研经历,并且给了一个假想的图文匹配的场景,问你有没有什么思路 没问八股 手撕题目是合并区间,没什么太大的难度 不知道一面的结果会咋样
9.1一面 一、实习 & 项目 Q:KM算法中的权重?动态变化? A:str / 接驾时长 Q:自注意力机制? 二、概率题 Q:30次都不点击的概率是0.936,问10次中至少点击一次的概率? A:1-(1-0.936)^(1/3) 三、算法题 不含重复字符的最小子串长度 9.14二面 一、问项目:实习相关 约40min Q:如何评估仿真系统的准确性? A:校准 二、深度相关问题 Q:平台补贴场景
10月12号笔试,三道编程。 10月18号测评。面试之前需要签署一个协议《知识产权和商业秘密保护承诺书》。 面试之前hr会一次性预约一面二面的时间,如果一面通过就直接参加二面,大部分一二面是同一天完成的。我一面面完已经6点了所以二面约在了第二天上午。 10月20号一面。50分钟。介绍项目。基本上简历上写的都差不多讲了。别的同学有问笔试题思路的,我没被问到。介绍完了之后开始写算法题。我用的回溯暴力搜
#运筹优化# #实习# #OPPO# 1.自我介绍 2.单纯形法、分枝定界 3.单纯形法是不是能解所有凸优化(我说只能解线性规划,被质疑,让解释),机器学习优化过程为什么不用单纯形法、用什么方法、和单纯形法有什么区别(区别我没太搞懂,只说了一个是单纯形法是精确解,梯度下降不是) 4.整数规划是不是凸的(我说不是:整数规划的可行域不是凸集,被质疑?然后问凸集的概念) 5.机器学习,xgboost为什
#影石Insta360# 其实已经过大半年有余了,去年7月offer,现在才突然想到,应该写一下当时的经验的 本人简历:研究生,视频超分,有论文及项目,无实习,有超分竞赛经历(没奖) 一面 自我介绍 围绕简历提问,重点是技术核心和关键问题的解决 归一化目的,归一化永远是好的吗 反问,得知工作地点是研究院,偏落地 二面 自我介绍 围绕简历提问,重点是技术核心和关键问题的解决 手写transform
过程太尴尬了,大约还记得有以下几个问题: 1. 自我介绍 2. 介绍认为最有意义的一个工作,包括难点,解决方案,如何调优等等 3. 介绍GNN网络的组成 4. 在训练模型时,如何判断欠拟合和过拟合 5. 针对过拟合的解决方案 问题5我答了正则化和early stopping,面试官接着问还有什么解决方案,我答dropout 6. 训练和推理时dropout是如何做的 7. 逻辑回归使用的损失函数
9.26一面技术面 整体体验挺好的,面试官都非常礼貌,见到你都微笑的,整体体验最好,虽然我答的一般。 1.自我介绍 2.问项目,问竞赛里面的和技术有关的 3.手撕一道简单的链表题 4.提问为啥不选择深造 5.反问环节 紧接着HR面: 1.自我介绍 2.问AI发展趋势研判 3.问竞赛中的职责,leader的话,你是如何解决队员的问题的 4.提问意向城市,为啥想去广东发展 5.问对vivo未来AI应用
自我介绍 问实习: (1)特征工程做了什么(这段回答很不好,因为广告业务会有很多特征工程,时间戳处理、时间窗口内统计信息等,我当时回答的时候按照实习实际情况回答的,特征工程工作比较少,感觉没有回答到面试官心坎上) (2)异常值/缺失值怎么处理的?(这块同上,回答的有点单薄) (3)xgb怎么对特征重要性排序的?(只回答出了分裂次数) (4)为什么选用自定义的这个损失函数?权重是什么? 还问了其他一
1. 问项目 2. 推荐系统链路 3. MMOE,PLE框架介绍 4. 讲讲你了解推荐系统里面的Bias有啥,对应的解决方案 5. transformer为何注意力部分要除以dk 6. GBDT中对于定性变量进行预测 7. LightGBM和XGBoost的区别 8. 编程:最长无重复字母的子字符串 #软件开发笔面经##作业帮#
2024.3.11 一面 聊项目并进行延伸 coding: 旋转数组最大值 2024.3.22 二面 聊项目,聊offer情况 coding: 手写kmeans 2024.4.3 HR面 聊实习经历,offer情况 2024.4.10 意向 2024.4.15 offer
分享面经 攒攒欧气! 一面 1. 首先是自我介绍加一个项目介绍 介绍了研究生期间的课题 用了什么方法?提升了多少指标?分析过badcase吗? 2. 简历有写大模型微调 问了目前的大模型微调方法你觉得哪一个最好? 3. 反问 二面 1. 自我介绍 2. 介绍命名实体识别项目,实体嵌套怎么解决? 3. 介绍大模型角色扮演项目,数据集怎么构建?原本微调后大模型只能扮演一个角色,问训练一次能否实现大模型
一面(和我之后的mentor面的): 深扒了我的项目,问我的方向主要是做什么的。当时是去年12月份,一篇CVPR在投。 transformer中self-attention的复杂度,写一下self-attention的公式,为什么要除以根号dk,问的很深,mentor超级有水平。后来进组被疯狂碾压。 为什么用论文里面用了transformer 一道算法,忘记是啥了,什么最长的.......,暴力解
今天面试了豆瓣算法岗,我一番自我介绍完之后,最后说自己学习能力强。然后面试官就说:我们先写一个基础的算法题吧。然后就给出了一个算法题,无奈自己LeetCode刷的真的还不太够,写了半个小时都没有写出来。