视频面试,面试时间:约一个小时 面试官迟到了几分钟 1、面试官解释迟到原因 2、自我介绍 3、介绍实习工作,并基于实习工作提问 4、介绍一个科研项目,并提问 5、算法题:01矩阵中找出面积最大的全一正方形(动态规划),问时间和空间复杂度 6、数组和链表的区别 7、有没有了解常见的机器学习算法?(报了下菜名) 8、反问环节:询问是哪个部门(因为百度投递的时候不知道部门)以及具体的业务 -------
面试时间:3.27 总时长:50分左右 没有自我介绍环节,上来面试官先简单介绍了下部门和面试流程(算法题—>八股—>项目—>反问),然后直接开始做题。 算法题: 求出多峰数组的任一个峰,要求时间O(log n),相当于leetcode 852的多峰形式 八股: 机器学习中过拟合的特点和解决方法 介绍一下self-attention和multi-head attention RoBERTa相比BER
有了解过码本的一些改进吗?除了最近邻匹配??? AE,VAE,VQ-VAE 介绍transformer 了解改变n方d复杂度的改进注意力吗 了解哪些传统的图像处理算法 然后一堆场景题 无手撕 #如何判断面试是否凉了##秋招##面经##算法##牛客解忧铺#
我使用Python 3.4和shapely 1.3.2创建一个多边形对象的长/lat坐标对列表,我转换成一个众所周知的文本字符串,以便解析它们。这样的多边形可能看起来像: 由于shapely不处理任何投影并实现carthesian空间中的所有几何体对象,因此对该多边形调用area方法,如: 以平方度为单位给出多边形的面积。为了得到以平方米为单位的平面面积,我想我必须使用不同的投影变换多边形的坐标(
更新:一面过了,等待复试安排 https://uploadfiles.nowcoder.com/images/20230927/557711646_1695807664522/A747E405F95C0E991B3159848CB5B148 兄弟们,为什么我又遇到kpi面了,是现在没hc了吗都。没hc为什么还要面我呢 一面 介绍了一下论文内容,和当前实习内容情况 大多时间都是在说这个 有没有了解目
10.9一面 主要聊实习做的东西的细节,面试官应该对优化比较熟悉,关于实习期间做的一个优化问题的建模有些争议,最后应该算是把面试官说服了? 问了混合A*相关的问题,混合A*和A*区别,如何设计启发函数保证搜索到的解最优 以及优化相关的问题,1.什么是凸优化问题? (目标函数是凸函数,可行集是凸集) 2.如何判断函数是凸函数?(Hessian矩阵半正定) 3.知道KKT条件吗?(知道是判断是极值点的
一面是只做代码 三道做对就算过 可惜 四道是写出来了 但是复杂度太高了 我说咋都这么简单 现在卡在初试了
题目:我现在有一个文件,把文件中出现单词频率最高的k个单词找出来,文件内容都是逗号分隔的单词 我用go语言写 abc.txt内容 "wang,jing,yu,shuai,ge,shuai,ge,j" package main import ( "fmt" "io/ioutil" "sort" "strings" ) func main() { contents, err :=
15min超短面 ①介绍项目 ②卷积相对全连接最大的优势 ③常用损失函数 ④常用正则化 ⑤知不知道目标检测 ⑥数据预处理方法 ⑦用过哪些神经网络 ⑧用什么深度学习框架 ⑨有过实际pytorch部署经验吗 回去等通知,还会再联系(也不知道是不是真的),感觉自己有关CV方面的没答好,毕竟我也不是搞CV的,不过看他们的JD也不是强制要求CV方向咯,不晓得后续如何
代码面50min,全程八股和coding没问简历 给了两段代码让我看有什么问题 没问题的那段什么情况下会有问题 改成有问题的 智能指针 写一段多线程访问shared_ptr对象会出现问题的代码 单例模式和工厂模式 写一段单例模式的代码 emplace_back和push_back的区别 emplace_back底层用了什么特性让其能够在容器内构造 手撕: 合并区间 无辅助数组原地合并区间
1、介绍项目经历,背景,过程,怎么解决的。 2、如果有一批数据,训练出来后效果精度达不到要求,怎么处理。 数据角度:噪声多需要降噪,数据本身不规律,数据缺值比较多,数据需要去重聚类,特征不够需要引入其他特征 模型角度:模型选择的问题,过于追求最新技术但是不适合场景,模型健壮度不够需要集成学习模型 参数角度:超参数的选择不是最优解导致梯度降不下去 实际角度:评价指标不合理 3、上一段离职原因,gap
早上去了盛泉恒元,公司感觉不错,小姐姐都很漂亮,基金公司没有想象中的西装革履,大家穿着都很随意。工作压力似乎也不大,就是面试有点狠,三个人审讯我,主管一顿说我项目不是企业实践的不行,太教科书。 我估计他们数据量小,数仓不需要分层那么多。不过嫌我数仓分层太多——太教科书就有点离谱了。还问我知不知道mr不用yarn,我寻思yarn那么好用,你为啥不用,你降级处理还要嫌我不实习实践所以不懂。然后告诉我就
连通图:在无向图G中,若从顶点i到顶点j有路径,则称顶点i和顶点j是连通的。若图G中任意两个顶点都连通,则称G为连通图。 生成树:一个连通图的生成树是该连通图的一个极小连通子图,它含有全部顶点,但只有构成一个数的(n-1)条边。 最小生成树:对于一个带权连通无向图G中的不同生成树,各树的边上的 权值之和最小。构造最小生成树的准则有三条: 必须只使用该图中的边来构造最小生成树。 必须使用且仅使用(n
题面在代码中 A. 平衡 和昨晚的美团笔试差不多,先一遍dfs处理以sz[i], 得到以 i 为根的子树大小,枚举边求答案即可。 /* 小红书 23届补录&24届实习 【24届实习】算法笔试 */ #include<bits/stdc++.h> #define debug(x) std::cerr << x << '\n'; #define all(x) x.begin(), x.end()
用的是赛码的面试系统,面试官到点发起了语音通话,在线IDE。 ------------------------------------------------------------------------------------ 自我介绍,五分钟结束,然后面试官没有就自我介绍提问。直接说开始做题,从这里感觉到这是KPI面了。 -----------------------------------