流模块基础
流模块基础
在node中,一共有五种类型的流:readable,writable,transform,duplex以及”classic”
pipe
无论哪一种流,都会使用.pipe()
方法来实现输入和输出。
.pipe()
函数很简单,它仅仅是接受一个源头src
并将数据输出到一个可写的流dst
中:
src.pipe(dst)
.pipe(dst)
将会返回dst
因此你可以链式调用多个流:
a.pipe(b).pipe(c).pipe(d)
上面的代码也可以等价为:
a.pipe(b);
b.pipe(c);
c.pipe(d);
这和你在unix中编写流代码很类似:
a | b | c | d
只不过此时你是在node中编写而不是在shell中!
readable流
Readable流可以产出数据,你可以将这些数据传送到一个writable,transform或者duplex流中,只需要调用pipe()
方法:
readableStream.pipe(dst)
创建一个readable流
现在我们就来创建一个readable流!
var Readable = require('stream').Readable;
var rs = new Readable;
rs.push('beep ');
rs.push('boop\n');
rs.push(null);
rs.pipe(process.stdout);
下面运行代码:
$ node read0.js
beep boop
在上面的代码中rs.push(null)
的作用是告诉rs
输出数据应该结束了。
需要注意的一点是我们在将数据输出到process.stdout
之前已经将内容推送进readable流rs
中,但是所有的数据依然是可写的。
这是因为在你使用.push()
将数据推进一个readable流中时,一直要到另一个东西来消耗数据之前,数据都会存在一个缓存中。
然而,在更多的情况下,我们想要的是当需要数据时数据才会产生,以此来避免大量的缓存数据。
我们可以通过定义一个._read
函数来实现按需推送数据:
var Readable = require('stream').Readable;
var rs = Readable();
var c = 97;
rs._read = function () {
rs.push(String.fromCharCode(c++));
if (c > 'z'.charCodeAt(0)) rs.push(null);
};
rs.pipe(process.stdout);
代码的运行结果如下所示:
$ node read1.js
abcdefghijklmnopqrstuvwxyz
在这里我们将字母a
到z
推进了rs中,但是只有当数据消耗者出现时,数据才会真正实现推送。
_read
函数也可以获取一个size
参数来指明消耗者想要读取多少比特的数据,但是这个参数是可选的。
需要注意到的是你可以使用util.inherit()
来继承一个Readable流。
为了说明只有在数据消耗者出现时,_read
函数才会被调用,我们可以将上面的代码简单的修改一下:
var Readable = require('stream').Readable;
var rs = Readable();
var c = 97 - 1;
rs._read = function () {
if (c >= 'z'.charCodeAt(0)) return rs.push(null);
setTimeout(function () {
rs.push(String.fromCharCode(++c));
}, 100);
};
rs.pipe(process.stdout);
process.on('exit', function () {
console.error('\n_read() called ' + (c - 97) + ' times');
});
process.stdout.on('error', process.exit);
运行上面的代码我们可以发现如果我们只请求5比特的数据,那幺_read
只会运行5次:
$ node read2.js | head -c5
abcde
_read() called 5 times
在上面的代码中,setTimeout
很重要,因为操作系统需要花费一些时间来发送程序结束信号。
另外,process.stdout.on('error',fn)
处理器也很重要,因为当head
不再关心我们的程序输出时,操作系统将会向我们的进程发送一个SIGPIPE
信号,此时process.stdout
将会捕获到一个EPIPE
错误。
上面这些复杂的部分在和操作系统相关的交互中是必要的,但是如果你直接和node中的流交互的话,则可有可无。
如果你创建了一个readable流,并且想要将任何的值推送到其中的话,确保你在创建流的时候指定了objectMode参数,Readable({ objectMode: true })
。
消耗一个readable流
大部分时候,将一个readable流直接pipe到另一种类型的流或者使用through或者concat-stream创建的流中,是一件很容易的事情。但是有时我们也会需要直接来消耗一个readable流。
process.stdin.on('readable', function () {
var buf = process.stdin.read();
console.dir(buf);
});
代码运行结果如下所示:
$ (echo abc; sleep 1; echo def; sleep 1; echo ghi) | node consume0.js
<Buffer 61 62 63 0a>
<Buffer 64 65 66 0a>
<Buffer 67 68 69 0a>
null
当数据可用时,readable
事件将会被触发,此时你可以调用.read()
方法来从缓存中获取这些数据。
当流结束时,.read()
将返回null
,因为此时已经没有更多的字节可以供我们获取了。
你也可以告诉.read()
方法来返回n
个字节的数据。虽然所有核心对象中的流都支持这种方式,但是对于对象流来说这种方法并不可用。
下面是一个例子,在这里我们制定每次读取3个字节的数据:
process.stdin.on('readable', function () {
var buf = process.stdin.read(3);
console.dir(buf);
});
运行上面的例子,我们将获取到不完整的数据:
$ (echo abc; sleep 1; echo def; sleep 1; echo ghi) | node consume1.js
<Buffer 61 62 63>
<Buffer 0a 64 65>
<Buffer 66 0a 67>
这是因为多余的数据都留在了内部的缓存中,因此这个时候我们需要告诉node我们还对剩下的数据感兴趣,我们可以使用.read(0)
来完成这件事:
process.stdin.on('readable', function () {
var buf = process.stdin.read(3);
console.dir(buf);
process.stdin.read(0);
});
到现在为止我们的代码和我们所期望的一样了!
$ (echo abc; sleep 1; echo def; sleep 1; echo ghi) | node consume2.js
<Buffer 61 62 63>
<Buffer 0a 64 65>
<Buffer 66 0a 67>
<Buffer 68 69 0a>
我们也可以使用.unshift()
方法来放置多余的数据。
使用unshift()
方法能够防止我们进行不必要的缓存拷贝。在下面的代码中我们将创建一个分割新行的可读解析器:
var offset = 0;
process.stdin.on('readable', function () {
var buf = process.stdin.read();
if (!buf) return;
for (; offset < buf.length; offset++) {
if (buf[offset] === 0x0a) {
console.dir(buf.slice(0, offset).toString());
buf = buf.slice(offset + 1);
offset = 0;
process.stdin.unshift(buf);
return;
}
}
process.stdin.unshift(buf);
});
代码的运行结果如下所示:
$ tail -n +50000 /usr/share/dict/american-english | head -n10 | node lines.js
'hearties'
'heartiest'
'heartily'
'heartiness'
'heartiness\'s'
'heartland'
'heartland\'s'
'heartlands'
'heartless'
'heartlessly'
当然,已经有很多这样的模块比如split来帮助你完成这件事情,你完全不需要自己写一个。
writable流
一个writable流指的是只能流进不能流出的流:
src.pipe(writableStream)
创建一个writable流
只需要定义一个._write(chunk,enc,next)
函数,你就可以将一个readable流的数据释放到其中:
var Writable = require('stream').Writable;
var ws = Writable();
ws._write = function (chunk, enc, next) {
console.dir(chunk);
next();
};
process.stdin.pipe(ws);
代码运行结果如下所示:
$ (echo beep; sleep 1; echo boop) | node write0.js
<Buffer 62 65 65 70 0a>
<Buffer 62 6f 6f 70 0a>
第一个参数,chunk
代表写进来的数据。
第二个参数enc
代表编码的字符串,但是只有在opts.decodeString
为false
的时候你才可以写一个字符串。
第三个参数,next(err)
是一个回调函数,使用这个回调函数你可以告诉数据消耗者可以写更多的数据。你可以有选择性的传递一个错误对象error
,这时会在流实体上触发一个emit
事件。
在从一个readable流向一个writable流传数据的过程中,数据会自动被转换为Buffer
对象,除非你在创建writable流的时候制定了decodeStrings
参数为false
,Writable({decodeStrings: false})
。
如果你需要传递对象,需要指定objectMode
参数为true
,Writable({ objectMode: true })
。
向一个writable流中写东西
如果你需要向一个writable流中写东西,只需要调用.write(data)
即可。
process.stdout.write('beep boop\n');
为了告诉一个writable流你已经写完毕了,只需要调用.end()
方法。你也可以使用.end(data)
在结束前再写一些数据。
var fs = require('fs');
var ws = fs.createWriteStream('message.txt');
ws.write('beep ');
setTimeout(function () {
ws.end('boop\n');
}, 1000);
运行结果如下所示:
$ node writing1.js
$ cat message.txt
beep boop
如果你需要调整内部缓冲区大小,那幺需要在创建可写流对象时设置highWaterMark
。在调用.write()
方法返回false时,说明写入的数据大小超过了该值。
为了避免读写速率不匹配而造成内存上涨,可以监听drain
事件,等待可写流内部缓存被清空再继续写入。
transform流
你可以将transform流想象成一个流的中间部分,它可以读也可写,但是并不保存数据,它只负责处理流经它的数据。
duplex流
Duplex流是一个可读也可写的流,就好像一个电话,可以接收也可以发送语音。一个rpc交换是一个duplex流的最好的例子。如果你看到过下面这样的代码:
a.pipe(b).pipe(a)
那幺你需要处理的就是一个duplex流对象。
classic流
Classic流是一个古老的接口,最早出现在node 0.4中。虽然现在不怎幺用,但是我们最好还是来了解一下它的工作原理。
无论何时,只要一个流对象注册了一个data
监听器,它就会自动的切换到classic
模式,并且根据旧API的方式运行。
classic readable流
Classic readable流只是一个事件发射器,当有数据消耗者出现时发射emit
事件,当输出数据完毕时发射end
事件。
我们可以同构检查stream.readable
来检查一个classic流对象是否可读。
下面是一个简单的readable流对象的例子,程序的运行结果将会输出A
到J
:
var Stream = require('stream');
var stream = new Stream;
stream.readable = true;
var c = 64;
var iv = setInterval(function () {
if (++c >= 75) {
clearInterval(iv);
stream.emit('end');
}
else stream.emit('data', String.fromCharCode(c));
}, 100);
stream.pipe(process.stdout);
运行结果如下所示:
$ node classic0.js
ABCDEFGHIJ
为了从一个classic readable流中读取数据,你可以注册data
和end
监听器。下面是一个使用旧readable流方式从process.stdin
中读取数据的例子:
process.stdin.on('data', function (buf) {
console.log(buf);
});
process.stdin.on('end', function () {
console.log('__END__');
});
运行结果如下所示:
$ (echo beep; sleep 1; echo boop) | node classic1.js
<Buffer 62 65 65 70 0a>
<Buffer 62 6f 6f 70 0a>
__END__
需要注意的一点是当你在一个流对象上注册了一个data
监听器,你就将这个流放在了兼容模式下,此时你不能使用两个stream2的api。
如果你自己创建流对象,永远不要绑定data
和end
监听器。如果你需要和旧版本的流兼容,最好使用第三方库来实现.pipe()
方法。
例如,你可以使用through模块来避免显式的使用data
和end
监听器:
var through = require('through');
process.stdin.pipe(through(write, end));
function write (buf) {
console.log(buf);
}
function end () {
console.log('__END__');
}
程序运行结果如下所示:
$ (echo beep; sleep 1; echo boop) | node through.js
<Buffer 62 65 65 70 0a>
<Buffer 62 6f 6f 70 0a>
__END__
你也可以使用concat-stream模块来将整个流的内容缓存起来:
var concat = require('concat-stream');
process.stdin.pipe(concat(function (body) {
console.log(JSON.parse(body));
}));
程序运行结果如下所示:
$ echo '{"beep":"boop"}' | node concat.js
{ beep: 'boop' }
Classic readable流拥有.pause()
和.resume()
逻辑来暂停一个流,但是这都是可选的。如果你想要使用.pause()
和.resume()
方法,你应该使用through模块来帮助你处理缓存。
classic writable流
Classic writable流非常简单。其中只定义了.write(buf)
,.end(buf)
,以及.desctory()
方法。其中.end(buf)
的参数buf是可选参数,但是一般来说node程序员还是喜欢使用.end(buf)
这种写法。