1 简介
早期计算机比现在更为简单。系统的各种组件例如 CPU,内存,大容量存储器和网口,由于被共同开发因而有非常均衡的表现。例如,内存和网口并不比CPU在提供数据的时候更(特别的)快。
曾今计算机稳定的基本结构悄然改变,硬件开发人员开始致力于优化单个子系统。于是电脑一些组件的性能大大的落后因而成为了瓶颈。由于开销的原因,大容量存储器和内存子系统相对于其他组件来说改善得更为缓慢。
大容量存储的性能问题往往靠软件来改善: 操作系统将常用(且最有可能被用)的数据放在主存中,因为后者的速度要快上几个数量级。或者将缓存加入存储设备中,这样就可以在不修改操作系统的前提下提升性能。{然而,为了在使用缓存时保证数据的完整性,仍然要作出一些修改。}这些内容不在本文的谈论范围之内,就不作赘述了。
而解决内存的瓶颈更为困难,它与大容量存储不同,几乎每种方案都需要对硬件作出修改。目前,这些变更主要有以下这些方式:
- RAM的硬件设计(速度与并发度)
- 内存控制器的设计
- CPU缓存
- 设备的直接内存访问(DMA)
本文主要关心的是CPU缓存和内存控制器的设计。在讨论这些主题的过程中,我们还会研究DMA。不过,我们首先会从当今商用硬件的设计谈起。这有助于我们理解目前在使用内存子系统时可能遇到的问题和限制。我们还会详细介绍RAM的分类,说明为什么会存在这么多不同类型的内存。
本文不会包括所有内容,也不会包括最终性质的内容。我们的讨论范围仅止于商用硬件,而且只限于其中的一小部分。另外,本文中的许多论题,我们只会点到为止,以达到本文目标为标准。对于这些论题,大家可以阅读其它文档,获得更详细的说明。
当本文提到操作系统特定的细节和解决方案时,针对的都是Linux。无论何时都不会包含别的操作系统的任何信息,作者无意讨论其他操作系统的情况。如果读者认为他/她不得不使用别的操作系统,那么必须去要求供应商提供其操作系统类似于本文的文档。
在开始之前最后的一点说明,本文包含大量出现的术语“经常”和别的类似的限定词。这里讨论的技术在现实中存在于很多不同的实现,所以本文只阐述使用得最广泛最主流的版本。在阐述中很少有地方能用到绝对的限定词。
1.1 文档结构
这个文档主要视为软件开发者而写的。本文不会涉及太多硬件细节,所以喜欢硬件的读者也许不会觉得有用。但是在我们讨论一些有用的细节之前,我们先要描述足够多的背景。
在这个基础上,本文的第二部分将描述RAM(随机寄存器)。懂得这个部分的内容很好,但是此部分的内容并不是懂得其后内容必须部分。我们会在之后引用不少之前的部分,所以心急的读者可以跳过任何章节来读他们认为有用的部分。
第三部分会谈到不少关于CPU缓存行为模式的内容。我们会列出一些图标,这样你们不至于觉得太枯燥。第三部分对于理解整个文章非常重要。第四部分将简短的描述虚拟内存是怎么被实现的。这也是你们需要理解全文其他部分的背景知识之一。
第五部分会提到许多关于Non Uniform Memory Access (NUMA)系统。
第六部分是本文的中心部分。在这个部分里面,我们将回顾其他许多部分中的信息,并且我们将给阅读本文的程序员许多在各种情况下的编程建议。如果你真的很心急,那么你可以直接阅读第六部分,并且我们建议你在必要的时候回到之前的章节回顾一下必要的背景知识。
本文的第七部分将介绍一些能够帮助程序员更好的完成任务的工具。即便在彻底理解了某一项技术的情况下,距离彻底理解在非测试环境下的程序还是很遥远的。我们需要借助一些工具。
第八部分,我们将展望一些在未来我们可能认为好用的科技。
1.2 反馈问题
作者会不定期更新本文档。这些更新既包括伴随技术进步而来的更新也包含更改错误。非常欢迎有志于反馈问题的读者发送电子邮件。
1.3 致谢
我首先需要感谢 Johnray Fuller 尤其是 Jonathan Corbet,感谢他们将作者的英语转化成为更为规范的形式。Markus Armbruster 提供大量本文中对于问题和缩写有价值的建议。
1.4 关于本文
本文题目对 David Goldberg 的经典文献《What Every Computer Scientist Should Know About Floating-Point Arithmetic》[goldberg] 表示致敬。Goldberg 的论文虽然不普及,但是对于任何有志于严格编程的人都会是一个先决条件。