当前位置: 首页 > 软件库 > 神经网络/人工智能 > >

Tinn

C 语言实现的微型神经网络库
授权协议 MIT
开发语言 C/C++
所属分类 神经网络/人工智能
软件类型 开源软件
地区 不详
投 递 者 施子民
操作系统 跨平台
开源组织
适用人群 未知
 软件概览

Tinn 是一个用 C99 编写的仅有 200 行代码微型神经网络库,无依赖,轻量级。同时支持任意 C++ 编译器进行编译。

#include "Tinn.h"
#include <stdio.h>

#define len(a) ((int) (sizeof(a) / sizeof(*a)))

int main()
{
    float in[] = { 0.05, 0.10 };
    float tg[] = { 0.01, 0.99 };
    /* Two hidden neurons */
    const Tinn tinn = xtbuild(len(in), 2, len(tg));
    for(int i = 0; i < 1000; i++)
    {
        float error = xttrain(tinn, in, tg, 0.5);
        printf("%.12f\n", error);
    }
    xtfree(tinn);
    return 0;
}
 相关资料
  • PyTorch包含创建和实现神经网络的特殊功能。在本章中,我们将创建一个简单的神经网络,实现一个隐藏层开发单个输出单元。 我们将使用以下步骤使用PyTorch实现第一个神经网络 - 第1步 首先,需要使用以下命令导入PyTorch库 - 第2步 定义所有图层和批量大小以开始执行神经网络,如下所示 - 第3步 由于神经网络包含输入数据的组合以获得相应的输出数据,使用以下给出的相同程序 - 第4步 借

  • 很长一段时间,核心NLP技术主要是机器学习方法,它们使用线性模型(如支持向量机或逻辑回归),通过非常高维但非常稀疏的特征向量进行训练。

  • 本节将使用Gluon来更简洁地实现基于循环神经网络的语言模型。首先,我们读取周杰伦专辑歌词数据集。 import d2lzh as d2l import math from mxnet import autograd, gluon, init, nd from mxnet.gluon import loss as gloss, nn, rnn import time (corpus_

  • 神经网络 (Neural Network) 是机器学习的一个分支,全称人工神经网络(Artificial Neural Network,缩写 ANN),是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。 Perceptron (感知器) 一个典型的神经网络由输入层、一个或多个隐藏层以及输出层组成,其中箭头代表着数据流动的方向,而圆圈代表激活函数(最常用的激活函数为

  • 译者:bat67 最新版会在译者仓库首先同步。 可以使用torch.nn包来构建神经网络. 我们以及介绍了autograd,nn包依赖于autograd包来定义模型并对它们求导。一个nn.Module包含各个层和一个forward(input)方法,该方法返回output。 例如,下面这个神经网络可以对数字进行分类: 这是一个简单的前馈神经网络(feed-forward network)。它接受一

  • 本文向大家介绍TensorFlow实现卷积神经网络CNN,包括了TensorFlow实现卷积神经网络CNN的使用技巧和注意事项,需要的朋友参考一下 一、卷积神经网络CNN简介 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被

  • 人工神经网络 人工神经网络又叫神经网络,是借鉴了生物神经网络的工作原理形成的一种数学模型。下面是一张生物神经元的图示: 生物神经网络就是由大量神经元构成的网络结构如下图: 生物的神经网络是通过神经元、细胞、触电等结构组成的一个大型网络结构,用来帮助生物进行思考和行动等。那么人们就想到了电脑是不是也可以像人脑一样具有这种结构,这样是不是就可以思考了? 类似于神经元的结构,人工神经网络也是基于这样的神

  • 本文向大家介绍Python实现感知器模型、两层神经网络,包括了Python实现感知器模型、两层神经网络的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了Python实现感知器模型、两层神经网络,供大家参考,具体内容如下 python 3.4 因为使用了 numpy 这里我们首先实现一个感知器模型来实现下面的对应关系 [[0,0,1], ——- 0 [0,1,1], ——- 1 [1,0