我正在尝试实现一个简单的神经网络。我知道已经有很多可用的库,这不是重点。
我的网络只有3层:一个输入层一个隐藏层一个输出层
输出层有8个神经元,每个神经元代表不同的类。
我知道如何实现feedfoward算法,但我真的很难实现反向传播算法。
这是我到目前为止得出的结论:
private void backPropagation(List<List<Input>> trainingData)
{
List<Input> trainingSet = new ArrayList<Input>();
for (int row = 0; row < trainingData.size(); row++) {
trainingSet = trainingData.get(row);
//we start by getting the output of the network
List<Double> outputs = feedFoward(trainingSet);
//Im using the Iris dataset, so here the desiredOutput is
//the species where
// 1 : setosa
// 2 : versicolor
// 3 : virginica
double desiredOutput = getDesiredOutputFromTrainingSet(trainingSet);
//We are getting the output neuron that fired the highest result
//like if we have
//Ouput layer :
//Neuron 1 --> 0.001221513
//Neuron 2 --> 0.990516510
//Neuron 3 --> 0.452221000
//so the network predicted that the trainingData correspond to (2) versicolor
double highestOutput = Collections.max(outputs);
//What our neuron should aim for
double target = 0;
List<Double> deltaOutputLayer = new ArrayList<Double>();
List<List<Double>> newWeightsOutputLayer = new ArrayList<List<Double>>();
for (int j = 0; j < outputs.size(); j++) {
double out = outputs.get(j);
//Important to do j + 1 because the species classes start at 1 (1 : setosa, 2: versicolor, 3:virginica)
if(out == highestOutput && (j + 1) == desiredOutput)
target = 0.99; //1
else
target = 0.01; //0
//chain rule
double delta = (out - target) * LogisticFonction.sigmoidPrime(out);
deltaOutputLayer.add(delta);
//get the new weigth value from delta and neta
List<Double> newWeights = new ArrayList<Double>();
for (int weightIndex = 0; weightIndex < _outputLayer.get(j).get_weigths().size(); weightIndex++) {
double gradient = delta * _outputsAfterActivationHiddenLayer.get(weightIndex);
double newWeight = _outputLayer.get(j).get_weigths().get(weightIndex) - (_learningRate * gradient);
newWeights.add(newWeight);
}
newWeightsOutputLayer.add(newWeights);
}
//hidden layer
double totalError = 0;
for (int i = 0; i < _neuronsHiddenLayer.size(); i++) {
for (int j = 0; j < deltaOutputLayer.size(); j++) {
double wi = _outputLayer.get(j).get_weigths().get(i);
double delta = deltaOutputLayer.get(j);
double partialError = wi * delta;
totalError += partialError;
}
double z = _outputsAfterActivationHiddenLayer.get(i);
double errorNeuron = LogisticFonction.sigmoidPrime(z);
List<Double> newWeightsHiddenLayer = new ArrayList<Double>();
for (int k = 0; k < _neuronsHiddenLayer.get(i).get_weigths().size(); k++) {
double in = _neuronsHiddenLayer.get(i).get_inputs().get(k);
double gradient = totalError * errorNeuron * in;
double oldWeigth = _neuronsHiddenLayer.get(i).get_weigths().get(k);
double newWeigth = oldWeigth - (_learningRate * gradient);
_neuronsHiddenLayer.get(i).get_weigths().set(k, newWeigth);
newWeightsHiddenLayer.add(newWeigth);
}
}
//then update the weigth of the output layer with the new values.
for (int i = 0; i < newWeightsOutputLayer.size(); i++) {
List<Double> newWeigths = newWeightsOutputLayer.get(i);
_outputLayer.get(i).set_weigths(newWeigths);
}
}
}
我尝试使用Iris数据集进行测试:https://en.wikipedia.org/wiki/Iris_flower_data_set
但我的结果非常不一致,这让我相信我的反向传播算法中有一个bug。
如果有人能看出一些重大缺陷,请告诉我!
非常感谢。
在这部分代码中:
if(out == highestOutput && (j + 1) == desiredOutput)
target = 0.99; //1
else
target = 0.01; //0
当条件(out==high estOutput)时,神经元的目标输出为
0.99
这部分代码的条件应该只为(j 1)=期望输出(desiredOutput)
。删除out==高输出条件。对于期望输出的神经元,目标输出应为0.99,无论前馈是否产生该神经元。这是正确的代码:
if((j + 1) == desiredOutput)
target = 0.99; //1
else
target = 0.01; //0
我很难构建好的神经网络教学算法,因为有一些人工操作。第一件事:我的目标是教nn-xor函数,我使用sigmoid作为激活函数和简单的梯度下降。前馈很容易,但backprop在某种程度上令人困惑——大多数算法描述中常见的步骤有:1。计算输出层上的错误。2、将此错误传播到有关权重3的隐藏层。更新突触上的权重 所以我的问题:1。偏差也应该更新吗?如果是,如何更新?目前我随机选择偏差[0.5;1]?2.在
我正在尝试用RELU实现神经网络。 输入层- 以上是我的神经网络结构。我对这个relu的反向传播感到困惑。对于RELU的导数,如果x 有人能解释一下我的神经网络架构的反向传播“一步一步”吗?
考虑具有以下架构的卷积神经网络: Standford的深度学习教程使用以下等式来实现这一点: 然而,在使用这个等式时,我面临以下问题: 我做错了什么?有人能解释一下如何通过卷积层传播错误吗? 简单的MATLAB示例将受到高度赞赏。
我们首先回顾DNN的反向传播算法。在DNN中,我们是首先计算出输出层的$$deltaL:deltaL = frac{partial J(W,b)}{partial zL} = frac{partial J(W,b)}{partial aL}odot sigma{'}(zL)$$ 利用数学归纳法,用$$delta{l+1}$$的值一步步的向前求出第l层的$$deltal$$,表达式为:$$delta
我正在从头开始编写一个backprop神经网络迷你库,我需要一些帮助来编写有意义的自动测试。到目前为止,我已经进行了自动化测试,以验证backprop算法是否正确计算了权重和偏差梯度,但没有测试训练本身是否有效。 到目前为止,我使用的代码可以执行以下操作: 定义一个具有任意层数和每层神经元数的神经网络 鉴于所有这些,我可以编写什么样的自动化测试来确保训练算法被正确实施。我应该尝试近似什么函数(si
这是本帖的后续问题。对于一个给定的神经元,我不清楚如何得到它的误差的偏导数和它的权重的偏导数。 通过这个网页,我们可以清楚地看到Propocation是如何工作的(尽管我处理的是弹性传播)。对于一个前馈神经网络,我们必须:1)在向前通过神经网络时,触发神经元;2)从输出层神经元,计算总误差;3)向后移动,以每个神经元的权值来计算该误差;4)再次向前移动,更新每个神经元的权值。 不过,这些都是我不明