我有一个简单的前馈神经网络,有2个输入神经元(和1个偏置神经元),4个隐藏神经元(和1个偏置神经元),和一个输出神经元。前馈机制似乎运行良好,但我很难完全理解如何实现反向传播算法。
有3个班:
为了让事情更清楚,我上了微积分课,所以我理解了一些概念,虽然这是相当先进的,但我还是想让它发挥作用。
传递函数是一个logistic函数。突触的权重“附加”到输出该值的神经元上。
这是我对反向传播函数的尝试:
void Net::backPropagate(const vector<double>& targetVals) {
Layer& outputLayer = myLayers.back();
assert(targetVals.size() == outputLayer.size());
cout << "good2" << endl;
// Starting with the output layer
for (unsigned int i = 0; i < outputLayer.size(); ++i) { // Traversing output layer
double output = outputLayer[i].getOutput(); cout << "good3" << endl;
double error = output * (1 - output) * (pow(targetVals[i] - output,2)); cout << "good4" << endl;
outputLayer[i].setError(error); // Calculating error
double newWeight = outputLayer[i].getWeight();
newWeight += (error * outputLayer[i].getOutput());
outputLayer[i].setWeight(newWeight); // Setting new weight
cout << "good5" << endl;
}
for (unsigned int i = myLayers.size() - 2; i > 0; --i) { // Traversing hidden layers all the way to input layer
Layer& currentLayer = myLayers[i];
Layer& nextLayer = myLayers[i + 1];
for (unsigned int j = 0; j < currentLayer.size(); ++j) { // Traversing current layer
const double& output = currentLayer[j].getOutput();
double subSum = 0.0; // Initializing subsum
for (unsigned int k = 0; k < nextLayer.size(); ++k) { // Traversing next layer
subSum += pow(nextLayer[k].getError() * currentLayer[j].getWeight(),2); // Getting their backpropagated error and weight
}
double error = output*(1 - output)*(subSum);
currentLayer[j].setError(error);
double newWeight = currentLayer[j].getWeight();
newWeight += error * output;
currentLayer[j].setWeight(newWeight);
}
}
// STL_Practice.cpp : Defines the entry point for the console application.
//
#include <iostream>
#include <cassert>
#include <cstdlib>
#include <vector>
#include <time.h>
#include "ConsoleColor.hpp"
using namespace std;
namespace Neural {
class Neuron;
typedef vector<Neuron> Layer;
// ******************** Class: Connection ******************** //
class Connection {
public:
Connection();
void setOutput(const double& outputVal) { myOutputVal = outputVal; }
void setWeight(const double& weight) { myDeltaWeight = myWeight- weight; myWeight = weight; }
double getOutput(void) const { return myOutputVal; }
double getWeight(void) const { return myWeight; }
private:
static double randomizeWeight(void) { return rand() / double(RAND_MAX); }
double myOutputVal;
double myWeight;
double myDeltaWeight;
};
Connection::Connection() {
myOutputVal = 0;
myWeight = Connection::randomizeWeight();
myDeltaWeight = myWeight;
cout << "Weight: " << myWeight << endl;
}
// ******************** Class: Neuron ************************ //
class Neuron {
public:
Neuron();
void setIndex(const unsigned int& index) { myIndex = index; }
void setOutput(const double& output) { myConnection.setOutput(output); }
void setWeight(const double& weight) { myConnection.setWeight(weight); }
void setError(const double& error) { myError = error; }
unsigned int getIndex(void) const { return myIndex; }
double getOutput(void) const { return myConnection.getOutput(); }
double getWeight(void) const { return myConnection.getWeight(); }
double getError(void) const { return myError; }
void feedForward(const Layer& prevLayer);
void printOutput(void) const;
private:
inline static double transfer(const double& weightedSum);
Connection myConnection;
unsigned int myIndex;
double myError;
};
Neuron::Neuron() : myIndex(0), myConnection() { }
double Neuron::transfer(const double& weightedSum) { return 1 / double((1 + exp(-weightedSum))); }
void Neuron::printOutput(void) const { cout << "Neuron " << myIndex << ':' << myConnection.getOutput() << endl; }
void Neuron::feedForward(const Layer& prevLayer) {
// Weight sum of the previous layer's output values
double weightedSum = 0;
for (unsigned int i = 0; i < prevLayer.size(); ++i) {
weightedSum += prevLayer[i].getOutput()*myConnection.getWeight();
cout << "Neuron " << i << " from prevLayer has output: " << prevLayer[i].getOutput() << endl;
cout << "Weighted sum: " << weightedSum << endl;
}
// Transfer function
myConnection.setOutput(Neuron::transfer(weightedSum));
cout << "Transfer: " << myConnection.getOutput() << endl;
}
// ******************** Class: Net *************************** //
class Net {
public:
Net(const vector<unsigned int>& topology);
void setTarget(const vector<double>& targetVals);
void feedForward(const vector<double>& inputVals);
void backPropagate(const vector<double>& targetVals);
void printOutput(void) const;
private:
vector<Layer> myLayers;
};
Net::Net(const vector<unsigned int>& topology) {
assert(topology.size() > 0);
for (unsigned int i = 0; i < topology.size(); ++i) { // Creating the layers
myLayers.push_back(Layer(((i + 1) == topology.size()) ? topology[i] : topology[i] + 1)); // +1 is for bias neuron
// Setting each neurons index inside layer
for (unsigned int j = 0; j < myLayers[i].size(); ++j) {
myLayers[i][j].setIndex(j);
}
// Console log
cout << red;
if (i == 0) {
cout << "Input layer (" << myLayers[i].size() << " neurons including bias neuron) created." << endl;
myLayers[i].back().setOutput(1);
}
else if (i < topology.size() - 1) {
cout << "Hidden layer " << i << " (" << myLayers[i].size() << " neurons including bias neuron) created." << endl;
myLayers[i].back().setOutput(1);
}
else { cout << "Output layer (" << myLayers[i].size() << " neurons) created." << endl; }
cout << white;
}
}
void Net::feedForward(const vector<double>& inputVals) {
assert(myLayers[0].size() - 1 == inputVals.size());
for (unsigned int i = 0; i < inputVals.size(); ++i) { // Setting input vals to input layer
cout << yellow << "Setting input vals...";
myLayers[0][i].setOutput(inputVals[i]); // myLayers[0] is the input layer
cout << "myLayer[0][" << i << "].getOutput()==" << myLayers[0][i].getOutput() << white << endl;
}
for (unsigned int i = 1; i < myLayers.size() - 1; ++i) { // Updating hidden layers
for (unsigned int j = 0; j < myLayers[i].size() - 1; ++j) { // - 1 because bias neurons do not have input
cout << "myLayers[" << i << "].size()==" << myLayers[i].size() << endl;
cout << green << "Updating neuron " << j << " inside layer " << i << white << endl;
myLayers[i][j].feedForward(myLayers[i - 1]); // Updating the neurons output based on the neurons of the previous layer
}
}
for (unsigned int i = 0; i < myLayers.back().size(); ++i) { // Updating output layer
cout << green << "Updating output neuron " << i << ": " << white << endl;
const Layer& prevLayer = myLayers[myLayers.size() - 2];
myLayers.back()[i].feedForward(prevLayer); // Updating the neurons output based on the neurons of the previous layer
}
}
void Net::printOutput(void) const {
for (unsigned int i = 0; i < myLayers.back().size(); ++i) {
cout << blue; myLayers.back()[i].printOutput(); cout << white;
}
}
void Net::backPropagate(const vector<double>& targetVals) {
Layer& outputLayer = myLayers.back();
assert(targetVals.size() == outputLayer.size());
cout << "good2" << endl;
// Starting with the output layer
for (unsigned int i = 0; i < outputLayer.size(); ++i) { // Traversing output layer
double output = outputLayer[i].getOutput(); cout << "good3" << endl;
double error = output * (1 - output) * (pow(targetVals[i] - output,2)); cout << "good4" << endl;
outputLayer[i].setError(error); // Calculating error
double newWeight = outputLayer[i].getWeight();
newWeight += (error * outputLayer[i].getOutput());
outputLayer[i].setWeight(newWeight); // Setting new weight
cout << "good5" << endl;
}
for (unsigned int i = myLayers.size() - 2; i > 0; --i) { // Traversing hidden layers all the way to input layer
Layer& currentLayer = myLayers[i];
Layer& nextLayer = myLayers[i + 1];
for (unsigned int j = 0; j < currentLayer.size(); ++j) { // Traversing current layer
const double& output = currentLayer[j].getOutput();
double subSum = 0.0; // Initializing subsum
for (unsigned int k = 0; k < nextLayer.size(); ++k) { // Traversing next layer
subSum += pow(nextLayer[k].getError() * currentLayer[j].getWeight(),2); // Getting their backpropagated error and weight
}
double error = output*(1 - output)*(subSum);
currentLayer[j].setError(error);
double newWeight = currentLayer[j].getWeight();
newWeight += error * output;
currentLayer[j].setWeight(newWeight);
}
}
}
}
int main(int argc, char* argv[]) {
srand(time(NULL));
vector<unsigned int> myTopology;
myTopology.push_back(2);
myTopology.push_back(4);
myTopology.push_back(1);
cout << myTopology.size() << endl << endl; // myTopology == {3, 4, 2 ,1}
Neural::Net myNet(myTopology);
for (unsigned int i = 0; i < 50; ++i) {
myNet.feedForward({1, 1});
myNet.backPropagate({0});
}
for (unsigned int i = 0; i < 50; ++i){
myNet.feedForward({0, 0});
myNet.backPropagate({1});
}
cout << "Feeding 0,0" << endl;
myNet.feedForward({0, 0});
myNet.printOutput();
cout << "Feeding 1,1" << endl;
myNet.feedForward({1, 1});
myNet.printOutput();
return 0;
}
您可以尝试训练直到网络的误差为0%,但这可能会花费太长时间或不可能。通常使用0.01(1%)的最小误差,阈值如下:>0.9=1和<0.1=0。
要计算具有单个输出神经元的网络的误差,您需要将Sum(Math.abs(idealOutput-a.value))添加到每个输入的列表中。然后对列表进行平均以得到错误。
我用C#实现的是:
int epoch = 0;
double error = 1.0;
Network = network;
while (error > minError && epoch < int.MaxValue)
{
var errors = new List<double>();
for (int i = 0; i < inputs.Count; i++)
{
Algorithm(inputs[i], ideals[i]);
int n = 0;
errors.Add(Network.Layers[Network.Layers.Count - 1].Neurons.Sum(a => Math.Abs(ideals[i][n++] - a.Value)));
}
error = errors.Average();
Console.WriteLine("Epoch: #{0} --- Error: {1}", epoch, error);
epoch++;
}
我正在尝试实现一个简单的神经网络。我知道已经有很多可用的库,这不是重点。 我的网络只有3层:一个输入层一个隐藏层一个输出层 输出层有8个神经元,每个神经元代表不同的类。 我知道如何实现feedfoward算法,但我真的很难实现反向传播算法。 这是我到目前为止得出的结论: 我尝试使用Iris数据集进行测试:https://en.wikipedia.org/wiki/Iris_flower_data_
考虑具有以下架构的卷积神经网络: Standford的深度学习教程使用以下等式来实现这一点: 然而,在使用这个等式时,我面临以下问题: 我做错了什么?有人能解释一下如何通过卷积层传播错误吗? 简单的MATLAB示例将受到高度赞赏。
我很难构建好的神经网络教学算法,因为有一些人工操作。第一件事:我的目标是教nn-xor函数,我使用sigmoid作为激活函数和简单的梯度下降。前馈很容易,但backprop在某种程度上令人困惑——大多数算法描述中常见的步骤有:1。计算输出层上的错误。2、将此错误传播到有关权重3的隐藏层。更新突触上的权重 所以我的问题:1。偏差也应该更新吗?如果是,如何更新?目前我随机选择偏差[0.5;1]?2.在
我正在尝试用RELU实现神经网络。 输入层- 以上是我的神经网络结构。我对这个relu的反向传播感到困惑。对于RELU的导数,如果x 有人能解释一下我的神经网络架构的反向传播“一步一步”吗?
我们首先回顾DNN的反向传播算法。在DNN中,我们是首先计算出输出层的$$deltaL:deltaL = frac{partial J(W,b)}{partial zL} = frac{partial J(W,b)}{partial aL}odot sigma{'}(zL)$$ 利用数学归纳法,用$$delta{l+1}$$的值一步步的向前求出第l层的$$deltal$$,表达式为:$$delta
我正在从头开始编写一个backprop神经网络迷你库,我需要一些帮助来编写有意义的自动测试。到目前为止,我已经进行了自动化测试,以验证backprop算法是否正确计算了权重和偏差梯度,但没有测试训练本身是否有效。 到目前为止,我使用的代码可以执行以下操作: 定义一个具有任意层数和每层神经元数的神经网络 鉴于所有这些,我可以编写什么样的自动化测试来确保训练算法被正确实施。我应该尝试近似什么函数(si