本文实例讲述了Python实现的递归神经网络。分享给大家供大家参考,具体如下:
# Recurrent Neural Networks import copy, numpy as np np.random.seed(0) # compute sigmoid nonlinearity def sigmoid(x): output = 1/(1+np.exp(-x)) return output # convert output of sigmoid function to its derivative def sigmoid_output_to_derivative(output): return output*(1-output) # training dataset generation int2binary = {} binary_dim = 8 largest_number = pow(2,binary_dim) binary = np.unpackbits( np.array([range(largest_number)],dtype=np.uint8).T,axis=1) for i in range(largest_number): int2binary[i] = binary[i] # input variables alpha = 0.1 input_dim = 2 hidden_dim = 16 output_dim = 1 # initialize neural network weights synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1 synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1 synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1 synapse_0_update = np.zeros_like(synapse_0) synapse_1_update = np.zeros_like(synapse_1) synapse_h_update = np.zeros_like(synapse_h) # training logic for j in range(10000): # generate a simple addition problem (a + b = c) a_int = np.random.randint(largest_number/2) # int version a = int2binary[a_int] # binary encoding b_int = np.random.randint(largest_number/2) # int version b = int2binary[b_int] # binary encoding # true answer c_int = a_int + b_int c = int2binary[c_int] # where we'll store our best guess (binary encoded) d = np.zeros_like(c) overallError = 0 layer_2_deltas = list() layer_1_values = list() layer_1_values.append(np.zeros(hidden_dim)) # moving along the positions in the binary encoding for position in range(binary_dim): # generate input and output X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]]) y = np.array([[c[binary_dim - position - 1]]]).T # hidden layer (input ~+ prev_hidden) layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h)) # output layer (new binary representation) layer_2 = sigmoid(np.dot(layer_1,synapse_1)) # did we miss?... if so, by how much? layer_2_error = y - layer_2 layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2)) overallError += np.abs(layer_2_error[0]) # decode estimate so we can print(it out) d[binary_dim - position - 1] = np.round(layer_2[0][0]) # store hidden layer so we can use it in the next timestep layer_1_values.append(copy.deepcopy(layer_1)) future_layer_1_delta = np.zeros(hidden_dim) for position in range(binary_dim): X = np.array([[a[position],b[position]]]) layer_1 = layer_1_values[-position-1] prev_layer_1 = layer_1_values[-position-2] # error at output layer layer_2_delta = layer_2_deltas[-position-1] # error at hidden layer layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1) # let's update all our weights so we can try again synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta) synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta) synapse_0_update += X.T.dot(layer_1_delta) future_layer_1_delta = layer_1_delta synapse_0 += synapse_0_update * alpha synapse_1 += synapse_1_update * alpha synapse_h += synapse_h_update * alpha synapse_0_update *= 0 synapse_1_update *= 0 synapse_h_update *= 0 # print(out progress) if j % 1000 == 0: print("Error:" + str(overallError)) print("Pred:" + str(d)) print("True:" + str(c)) out = 0 for index,x in enumerate(reversed(d)): out += x*pow(2,index) print(str(a_int) + " + " + str(b_int) + " = " + str(out)) print("------------")
运行输出:
Error:[ 3.45638663] Pred:[0 0 0 0 0 0 0 1] True:[0 1 0 0 0 1 0 1] 9 + 60 = 1 ------------ Error:[ 3.63389116] Pred:[1 1 1 1 1 1 1 1] True:[0 0 1 1 1 1 1 1] 28 + 35 = 255 ------------ Error:[ 3.91366595] Pred:[0 1 0 0 1 0 0 0] True:[1 0 1 0 0 0 0 0] 116 + 44 = 72 ------------ Error:[ 3.72191702] Pred:[1 1 0 1 1 1 1 1] True:[0 1 0 0 1 1 0 1] 4 + 73 = 223 ------------ Error:[ 3.5852713] Pred:[0 0 0 0 1 0 0 0] True:[0 1 0 1 0 0 1 0] 71 + 11 = 8 ------------ Error:[ 2.53352328] Pred:[1 0 1 0 0 0 1 0] True:[1 1 0 0 0 0 1 0] 81 + 113 = 162 ------------ Error:[ 0.57691441] Pred:[0 1 0 1 0 0 0 1] True:[0 1 0 1 0 0 0 1] 81 + 0 = 81 ------------ Error:[ 1.42589952] Pred:[1 0 0 0 0 0 0 1] True:[1 0 0 0 0 0 0 1] 4 + 125 = 129 ------------ Error:[ 0.47477457] Pred:[0 0 1 1 1 0 0 0] True:[0 0 1 1 1 0 0 0] 39 + 17 = 56 ------------ Error:[ 0.21595037] Pred:[0 0 0 0 1 1 1 0] True:[0 0 0 0 1 1 1 0] 11 + 3 = 14 ------------
英文原文:https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
介绍 可以在 this great article 查看循环神经网络(RNN)以及 LSTM 的介绍。 语言模型 此教程将展示如何在高难度的语言模型中训练循环神经网络。该问题的目标是获得一个能确定语句概率的概率模型。为了做到这一点,通过之前已经给出的词语来预测后面的词语。我们将使用 PTB(Penn Tree Bank) 数据集,这是一种常用来衡量模型的基准,同时它比较小而且训练起来相对快速。 语
递归神经网络(Recurrent Neural Networks,RNN)是两种人工神经网络的总称:时间递归神经网络(recurrent neural network)和结构递归神经网络(recursive neural network)。时间递归神经网络的神经元间连接构成有向图,而结构递归神经网络利用相似的神经网络结构递归构造更为复杂的深度网络。 RNN一般指代时间递归神经网络。单纯递归神经网络
主要内容:使用TensorFlow实现递归神经网络递归神经网络是一种面向深度学习的算法,遵循顺序方法。在神经网络中,我们总是假设每个输入和输出都独立于所有其他层。这些类型的神经网络称为循环,因为它们以顺序方式执行数学计算。 考虑以下步骤来训练递归神经网络 - 第1步 - 从数据集输入特定示例。 第2步 - 网络将举例并使用随机初始化变量计算一些计算。 第3步 - 然后计算预测结果。 第4步 - 生成的实际结果与期望值的比较将产生错误。 第5步 -
深度神经网络具有独特的功能,可以帮助机器学习突破自然语言的过程。 据观察,这些模型中的大多数将语言视为单词或字符的平坦序列,并使用一种称为递归神经网络或RNN的模型。 许多研究人员得出的结论是,对于短语的分层树,语言最容易被理解。 此类型包含在考虑特定结构的递归神经网络中。 PyTorch有一个特定的功能,有助于使这些复杂的自然语言处理模型更容易。 它是一个功能齐全的框架,适用于各种深度学习,并为
递归神经网络是一种遵循顺序方法的深度学习导向算法。在神经网络中,我们总是假设每个输入和输出都独立于所有其他层。这些类型的神经网络被称为循环,因为它们以顺序方式执行数学计算,完成一个接一个的任务。 下图说明了循环神经网络的完整方法和工作 - 在上图中,,,和是包括一些隐藏输入值的输入,即输出的相应输出的,和。现在将专注于实现PyTorch,以在递归神经网络的帮助下创建正弦波。 在训练期间,将遵循模型
介绍 可以在 this great article 查看循环神经网络(RNN)以及 LSTM 的介绍。 语言模型 此教程将展示如何在高难度的语言模型中训练循环神经网络。该问题的目标是获得一个能确定语句概率的概率模型。为了做到这一点,通过之前已经给出的词语来预测后面的词语。我们将使用 PTB(Penn Tree Bank) 数据集,这是一种常用来衡量模型的基准,同时它比较小而且训练起来相对快速。 语