本文实例为大家分享了Python实现神经网络算法及应用的具体代码,供大家参考,具体内容如下
首先用Python实现简单地神经网络算法:
import numpy as np # 定义tanh函数 def tanh(x): return np.tanh(x) # tanh函数的导数 def tan_deriv(x): return 1.0 - np.tanh(x) * np.tan(x) # sigmoid函数 def logistic(x): return 1 / (1 + np.exp(-x)) # sigmoid函数的导数 def logistic_derivative(x): return logistic(x) * (1 - logistic(x)) class NeuralNetwork: def __init__(self, layers, activation='tanh'): """ 神经网络算法构造函数 :param layers: 神经元层数 :param activation: 使用的函数(默认tanh函数) :return:none """ if activation == 'logistic': self.activation = logistic self.activation_deriv = logistic_derivative elif activation == 'tanh': self.activation = tanh self.activation_deriv = tan_deriv # 权重列表 self.weights = [] # 初始化权重(随机) for i in range(1, len(layers) - 1): self.weights.append((2 * np.random.random((layers[i - 1] + 1, layers[i] + 1)) - 1) * 0.25) self.weights.append((2 * np.random.random((layers[i] + 1, layers[i + 1])) - 1) * 0.25) def fit(self, X, y, learning_rate=0.2, epochs=10000): """ 训练神经网络 :param X: 数据集(通常是二维) :param y: 分类标记 :param learning_rate: 学习率(默认0.2) :param epochs: 训练次数(最大循环次数,默认10000) :return: none """ # 确保数据集是二维的 X = np.atleast_2d(X) temp = np.ones([X.shape[0], X.shape[1] + 1]) temp[:, 0: -1] = X X = temp y = np.array(y) for k in range(epochs): # 随机抽取X的一行 i = np.random.randint(X.shape[0]) # 用随机抽取的这一组数据对神经网络更新 a = [X[i]] # 正向更新 for l in range(len(self.weights)): a.append(self.activation(np.dot(a[l], self.weights[l]))) error = y[i] - a[-1] deltas = [error * self.activation_deriv(a[-1])] # 反向更新 for l in range(len(a) - 2, 0, -1): deltas.append(deltas[-1].dot(self.weights[l].T) * self.activation_deriv(a[l])) deltas.reverse() for i in range(len(self.weights)): layer = np.atleast_2d(a[i]) delta = np.atleast_2d(deltas[i]) self.weights[i] += learning_rate * layer.T.dot(delta) def predict(self, x): x = np.array(x) temp = np.ones(x.shape[0] + 1) temp[0:-1] = x a = temp for l in range(0, len(self.weights)): a = self.activation(np.dot(a, self.weights[l])) return a
使用自己定义的神经网络算法实现一些简单的功能:
小案例:
X: Y
0 0 0
0 1 1
1 0 1
1 1 0
from NN.NeuralNetwork import NeuralNetwork import numpy as np nn = NeuralNetwork([2, 2, 1], 'tanh') temp = [[0, 0], [0, 1], [1, 0], [1, 1]] X = np.array(temp) y = np.array([0, 1, 1, 0]) nn.fit(X, y) for i in temp: print(i, nn.predict(i))
发现结果基本机制,无限接近0或者无限接近1
第二个例子:识别图片中的数字
导入数据:
from sklearn.datasets import load_digits import pylab as pl digits = load_digits() print(digits.data.shape) pl.gray() pl.matshow(digits.images[0]) pl.show()
观察下:大小:(1797, 64)
数字0
接下来的代码是识别它们:
import numpy as np from sklearn.datasets import load_digits from sklearn.metrics import confusion_matrix, classification_report from sklearn.preprocessing import LabelBinarizer from NN.NeuralNetwork import NeuralNetwork from sklearn.cross_validation import train_test_split # 加载数据集 digits = load_digits() X = digits.data y = digits.target # 处理数据,使得数据处于0,1之间,满足神经网络算法的要求 X -= X.min() X /= X.max() # 层数: # 输出层10个数字 # 输入层64因为图片是8*8的,64像素 # 隐藏层假设100 nn = NeuralNetwork([64, 100, 10], 'logistic') # 分隔训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y) # 转化成sklearn需要的二维数据类型 labels_train = LabelBinarizer().fit_transform(y_train) labels_test = LabelBinarizer().fit_transform(y_test) print("start fitting") # 训练3000次 nn.fit(X_train, labels_train, epochs=3000) predictions = [] for i in range(X_test.shape[0]): o = nn.predict(X_test[i]) # np.argmax:第几个数对应最大概率值 predictions.append(np.argmax(o)) # 打印预测相关信息 print(confusion_matrix(y_test, predictions)) print(classification_report(y_test, predictions))
结果:
矩阵对角线代表预测正确的数量,发现正确率很多
这张表更直观地显示出预测正确率:
共450个案例,成功率94%
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
主要内容:神经网络算法特点,神经网络算法应用在深度学习大热的当下,神经网络算法是最知名、应用最为广泛的机器学习算法。可以毫不夸张地说,你所能接触到的人工智能产品,绝大部分都使用了神经网络算法,比如手机经常用到的刷脸解锁、美颜修图、照片中的人物识别等,都是基于神经网络分类算法实现的。 神经网络算法特点 我们知道,深度学习的本质就是神经网络算法(深度学习是神经网络算法的一个分支)。理论上来说,在数据量和隐藏层足够多的情况下,神经网络算法能够拟合
本文向大家介绍基于python的BP神经网络及异或实现过程解析,包括了基于python的BP神经网络及异或实现过程解析的使用技巧和注意事项,需要的朋友参考一下 BP神经网络是最简单的神经网络模型了,三层能够模拟非线性函数效果。 难点: 如何确定初始化参数? 如何确定隐含层节点数量? 迭代多少次?如何更快收敛? 如何获得全局最优解? 具体收敛效果 以上就是本文的全部内容,希望对大家的学习有所帮助,也
1. DNN反向传播算法要解决的问题 在了解DNN的反向传播算法前,我们先要知道DNN反向传播算法要解决的问题,也就是说,什么时候我们需要这个反向传播算法? 回到我们监督学习的一般问题,假设我们有m个训练样本:$${(x_1,y_1), (x_2,y_2), ..., (x_m,y_m)}$$,其中x为输入向量,特征维度为$$n_{in}$$,而y为输出向量,特征维度为$$n_{out}$$。我们
本文向大家介绍tensorflow构建BP神经网络的方法,包括了tensorflow构建BP神经网络的方法的使用技巧和注意事项,需要的朋友参考一下 之前的一篇博客专门介绍了神经网络的搭建,是在python环境下基于numpy搭建的,之前的numpy版两层神经网络,不能支持增加神经网络的层数。最近看了一个介绍tensorflow的视频,介绍了关于tensorflow的构建神经网络的方法,特此记录。
PyTorch包含创建和实现神经网络的特殊功能。在本章中,我们将创建一个简单的神经网络,实现一个隐藏层开发单个输出单元。 我们将使用以下步骤使用PyTorch实现第一个神经网络 - 第1步 首先,需要使用以下命令导入PyTorch库 - 第2步 定义所有图层和批量大小以开始执行神经网络,如下所示 - 第3步 由于神经网络包含输入数据的组合以获得相应的输出数据,使用以下给出的相同程序 - 第4步 借
人工神经网络指由大量的神经元互相连接而形成的复杂网络结构。以人的视觉系统为例,人的视觉系统的信息处理是分级的,高层的特征是低层特征的组合,从低层到高层的特征表示越来越抽象,越来越能表达语义或者意图。人工神经网络提出最初的目的是为了模拟生物神经网络传递和处理信息的功能。它按照一定规则将许多神经元连接在一起,并行的处理外接输入信息。人工神经网络的每一层都有若干神经元并用可变权重的有向弧连接,具体训练过程是通过多次迭代对已知信息的反复学习并调整改变神经元的连接权重。