本文介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,分享给大家,具体如下:
一、PyTorch入门
1. 安装方法
登录PyTorch官网,http://pytorch.org,可以看到以下界面:
按上图的选项选择后即可得到Linux下conda指令:
conda install pytorch torchvision -c soumith
目前PyTorch仅支持MacOS和Linux,暂不支持Windows。安装 PyTorch 会安装两个模块,一个是torch,一个 torchvision, torch 是主模块,用来搭建神经网络的,torchvision 是辅模块,有数据库,还有一些已经训练好的神经网络等着你直接用,比如 (VGG, AlexNet, ResNet)。
2. Numpy与Torch
torch_data = torch.from_numpy(np_data)可以将numpy(array)格式转换为torch(tensor)格式;torch_data.numpy()又可以将torch的tensor格式转换为numpy的array格式。注意Torch的Tensor和numpy的array会共享他们的存储空间,修改一个会导致另外的一个也被修改。
对于1维(1-D)的数据,numpy是以行向量的形式打印输出,而torch是以列向量的形式打印输出的。
其他例如sin, cos, abs,mean等numpy中的函数在torch中用法相同。需要注意的是,numpy中np.matmul(data, data)和data.dot(data)矩阵相乘会得到相同结果;torch中torch.mm(tensor, tensor)是矩阵相乘的方法,得到一个矩阵,tensor.dot(tensor)会把tensor转换为1维的tensor,然后逐元素相乘后求和,得到与一个实数。
相关代码:
import torch import numpy as np np_data = np.arange(6).reshape((2, 3)) torch_data = torch.from_numpy(np_data) # 将numpy(array)格式转换为torch(tensor)格式 tensor2array = torch_data.numpy() print( '\nnumpy array:\n', np_data, '\ntorch tensor:', torch_data, '\ntensor to array:\n', tensor2array, ) # torch数据格式在print的时候前后自动添加换行符 # abs data = [-1, -2, 2, 2] tensor = torch.FloatTensor(data) print( '\nabs', '\nnumpy: \n', np.abs(data), '\ntorch: ', torch.abs(tensor) ) # 1维的数据,numpy是行向量形式显示,torch是列向量形式显示 # sin print( '\nsin', '\nnumpy: \n', np.sin(data), '\ntorch: ', torch.sin(tensor) ) # mean print( '\nmean', '\nnumpy: ', np.mean(data), '\ntorch: ', torch.mean(tensor) ) # 矩阵相乘 data = [[1,2], [3,4]] tensor = torch.FloatTensor(data) print( '\nmatrix multiplication (matmul)', '\nnumpy: \n', np.matmul(data, data), '\ntorch: ', torch.mm(tensor, tensor) ) data = np.array(data) print( '\nmatrix multiplication (dot)', '\nnumpy: \n', data.dot(data), '\ntorch: ', tensor.dot(tensor) )
3. Variable
PyTorch中的神经网络来自于autograd包,autograd包提供了Tensor所有操作的自动求导方法。
autograd.Variable这是这个包中最核心的类。可以将Variable理解为一个装有tensor的容器,它包装了一个Tensor,并且几乎支持所有的定义在其上的操作。一旦完成运算,便可以调用 .backward()来自动计算出所有的梯度。也就是说只有把tensor置于Variable中,才能在神经网络中实现反向传递、自动求导等运算。
可以通过属性 .data 来访问原始的tensor,而关于这一Variable的梯度则可通过 .grad属性查看。
相关代码:
import torch from torch.autograd import Variable tensor = torch.FloatTensor([[1,2],[3,4]]) variable = Variable(tensor, requires_grad=True) # 打印展示Variable类型 print(tensor) print(variable) t_out = torch.mean(tensor*tensor) # 每个元素的^ 2 v_out = torch.mean(variable*variable) print(t_out) print(v_out) v_out.backward() # Variable的误差反向传递 # 比较Variable的原型和grad属性、data属性及相应的numpy形式 print('variable:\n', variable) # v_out = 1/4 * sum(variable*variable) 这是计算图中的 v_out 计算步骤 # 针对于 v_out 的梯度就是, d(v_out)/d(variable) = 1/4*2*variable = variable/2 print('variable.grad:\n', variable.grad) # Variable的梯度 print('variable.data:\n', variable.data) # Variable的数据 print(variable.data.numpy()) #Variable的数据的numpy形式
部分输出结果:
variable:
Variable containing:
1 2
3 4
[torch.FloatTensor of size 2x2]
variable.grad:
Variable containing:
0.5000 1.0000
1.5000 2.0000
[torch.FloatTensor of size 2x2]
variable.data:
1 2
3 4
[torch.FloatTensor of size 2x2]
[[ 1. 2.]
[ 3. 4.]]
4. 激励函数activationfunction
Torch的激励函数都在torch.nn.functional中,relu,sigmoid, tanh, softplus都是常用的激励函数。
相关代码:
import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt x = torch.linspace(-5, 5, 200) x_variable = Variable(x) #将x放入Variable x_np = x_variable.data.numpy() # 经过4种不同的激励函数得到的numpy形式的数据结果 y_relu = F.relu(x_variable).data.numpy() y_sigmoid = F.sigmoid(x_variable).data.numpy() y_tanh = F.tanh(x_variable).data.numpy() y_softplus = F.softplus(x_variable).data.numpy() plt.figure(1, figsize=(8, 6)) plt.subplot(221) plt.plot(x_np, y_relu, c='red', label='relu') plt.ylim((-1, 5)) plt.legend(loc='best') plt.subplot(222) plt.plot(x_np, y_sigmoid, c='red', label='sigmoid') plt.ylim((-0.2, 1.2)) plt.legend(loc='best') plt.subplot(223) plt.plot(x_np, y_tanh, c='red', label='tanh') plt.ylim((-1.2, 1.2)) plt.legend(loc='best') plt.subplot(224) plt.plot(x_np, y_softplus, c='red', label='softplus') plt.ylim((-0.2, 6)) plt.legend(loc='best') plt.show()
二、PyTorch实现回归
先看完整代码:
import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # 将1维的数据转换为2维数据 y = x.pow(2) + 0.2 * torch.rand(x.size()) # 将tensor置入Variable中 x, y = Variable(x), Variable(y) #plt.scatter(x.data.numpy(), y.data.numpy()) #plt.show() # 定义一个构建神经网络的类 class Net(torch.nn.Module): # 继承torch.nn.Module类 def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() # 获得Net类的超类(父类)的构造方法 # 定义神经网络的每层结构形式 # 各个层的信息都是Net类对象的属性 self.hidden = torch.nn.Linear(n_feature, n_hidden) # 隐藏层线性输出 self.predict = torch.nn.Linear(n_hidden, n_output) # 输出层线性输出 # 将各层的神经元搭建成完整的神经网络的前向通路 def forward(self, x): x = F.relu(self.hidden(x)) # 对隐藏层的输出进行relu激活 x = self.predict(x) return x # 定义神经网络 net = Net(1, 10, 1) print(net) # 打印输出net的结构 # 定义优化器和损失函数 optimizer = torch.optim.SGD(net.parameters(), lr=0.5) # 传入网络参数和学习率 loss_function = torch.nn.MSELoss() # 最小均方误差 # 神经网络训练过程 plt.ion() # 动态学习过程展示 plt.show() for t in range(300): prediction = net(x) # 把数据x喂给net,输出预测值 loss = loss_function(prediction, y) # 计算两者的误差,要注意两个参数的顺序 optimizer.zero_grad() # 清空上一步的更新参数值 loss.backward() # 误差反相传播,计算新的更新参数值 optimizer.step() # 将计算得到的更新值赋给net.parameters() # 可视化训练过程 if (t+1) % 10 == 0: plt.cla() plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) plt.text(0.5, 0, 'L=%.4f' % loss.data[0], fontdict={'size': 20, 'color': 'red'}) plt.pause(0.1)
首先创建一组带噪声的二次函数拟合数据,置于Variable中。定义一个构建神经网络的类Net,继承torch.nn.Module类。Net类的构造方法中定义输入神经元、隐藏层神经元、输出神经元数量的参数,通过super()方法获得Net父类的构造方法,以属性的方式定义Net的各个层的结构形式;定义Net的forward()方法将各层的神经元搭建成完整的神经网络前向通路。
定义好Net类后,定义神经网络实例,Net类实例可以直接print打印输出神经网络的结构信息。接着定义神经网络的优化器和损失函数。定义好这些后就可以进行训练了。optimizer.zero_grad()、loss.backward()、optimizer.step()分别是清空上一步的更新参数值、进行误差的反向传播并计算新的更新参数值、将计算得到的更新值赋给net.parameters()。循环迭代训练过程。
运行结果:
Net (
(hidden): Linear (1 -> 10)
(predict): Linear (10 -> 1)
)
三、PyTorch实现简单分类
完整代码:
import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt # 生成数据 # 分别生成2组各100个数据点,增加正态噪声,后标记以y0=0 y1=1两类标签,最后cat连接到一起 n_data = torch.ones(100,2) # torch.normal(means, std=1.0, out=None) x0 = torch.normal(2*n_data, 1) # 以tensor的形式给出输出tensor各元素的均值,共享标准差 y0 = torch.zeros(100) x1 = torch.normal(-2*n_data, 1) y1 = torch.ones(100) x = torch.cat((x0, x1), 0).type(torch.FloatTensor) # 组装(连接) y = torch.cat((y0, y1), 0).type(torch.LongTensor) # 置入Variable中 x, y = Variable(x), Variable(y) class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) self.out = torch.nn.Linear(n_hidden, n_output) def forward(self, x): x = F.relu(self.hidden(x)) x = self.out(x) return x net = Net(n_feature=2, n_hidden=10, n_output=2) print(net) optimizer = torch.optim.SGD(net.parameters(), lr=0.012) loss_func = torch.nn.CrossEntropyLoss() plt.ion() plt.show() for t in range(100): out = net(x) loss = loss_func(out, y) # loss是定义为神经网络的输出与样本标签y的差别,故取softmax前的值 optimizer.zero_grad() loss.backward() optimizer.step() if t % 2 == 0: plt.cla() # 过了一道 softmax 的激励函数后的最大概率才是预测值 # torch.max既返回某个维度上的最大值,同时返回该最大值的索引值 prediction = torch.max(F.softmax(out), 1)[1] # 在第1维度取最大值并返回索引值 pred_y = prediction.data.numpy().squeeze() target_y = y.data.numpy() plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn') accuracy = sum(pred_y == target_y)/200 # 预测中有多少和真实值一样 plt.text(1.5, -4, 'Accu=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'}) plt.pause(0.1) plt.ioff() plt.show()
神经网络结构部分的Net类与前文的回归部分的结构相同。
需要注意的是,在循环迭代训练部分,out定义为神经网络的输出结果,计算误差loss时不是使用one-hot形式的,loss是定义在out与y上的torch.nn.CrossEntropyLoss(),而预测值prediction定义为out经过Softmax后(将结果转化为概率值)的结果。
运行结果:
Net (
(hidden): Linear (2 -> 10)
(out):Linear (10 -> 2)
)
四、补充知识
1. super()函数
在定义Net类的构造方法的时候,使用了super(Net,self).__init__()语句,当前的类和对象作为super函数的参数使用,这条语句的功能是使Net类的构造方法获得其超类(父类)的构造方法,不影响对Net类单独定义构造方法,且不必关注Net类的父类到底是什么,若需要修改Net类的父类时只需修改class语句中的内容即可。
2. torch.normal()
torch.normal()可分为三种情况:(1)torch.normal(means,std, out=None)中means和std都是Tensor,两者的形状可以不必相同,但Tensor内的元素数量必须相同,一一对应的元素作为输出的各元素的均值和标准差;(2)torch.normal(mean=0.0, std, out=None)中mean是一个可定义的float,各个元素共享该均值;(3)torch.normal(means,std=1.0, out=None)中std是一个可定义的float,各个元素共享该标准差。
3. torch.cat(seq, dim=0)
torch.cat可以将若干个Tensor组装连接起来,dim指定在哪个维度上进行组装。
4. torch.max()
(1)torch.max(input)→ float
input是tensor,返回input中的最大值float。
(2)torch.max(input,dim, keepdim=True, max=None, max_indices=None) -> (Tensor, LongTensor)
同时返回指定维度=dim上的最大值和该最大值在该维度上的索引值。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍Python实现的递归神经网络简单示例,包括了Python实现的递归神经网络简单示例的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了Python实现的递归神经网络。分享给大家供大家参考,具体如下: 运行输出: 英文原文:https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/ 更多关于Python相关内容感兴趣的读
深度神经网络具有独特的功能,可以帮助机器学习突破自然语言的过程。 据观察,这些模型中的大多数将语言视为单词或字符的平坦序列,并使用一种称为递归神经网络或RNN的模型。 许多研究人员得出的结论是,对于短语的分层树,语言最容易被理解。 此类型包含在考虑特定结构的递归神经网络中。 PyTorch有一个特定的功能,有助于使这些复杂的自然语言处理模型更容易。 它是一个功能齐全的框架,适用于各种深度学习,并为
递归神经网络是一种遵循顺序方法的深度学习导向算法。在神经网络中,我们总是假设每个输入和输出都独立于所有其他层。这些类型的神经网络被称为循环,因为它们以顺序方式执行数学计算,完成一个接一个的任务。 下图说明了循环神经网络的完整方法和工作 - 在上图中,,,和是包括一些隐藏输入值的输入,即输出的相应输出的,和。现在将专注于实现PyTorch,以在递归神经网络的帮助下创建正弦波。 在训练期间,将遵循模型
本文向大家介绍TensorFlow实现简单卷积神经网络,包括了TensorFlow实现简单卷积神经网络的使用技巧和注意事项,需要的朋友参考一下 本文使用的数据集是MNIST,主要使用两个卷积层加一个全连接层构建的卷积神经网络。 先载入MNIST数据集(手写数字识别集),并创建默认的Interactive Session(在没有指定回话对象的情况下运行变量) 在定义一个初始化函数,因为卷积神经网络有
本文向大家介绍PyTorch上实现卷积神经网络CNN的方法,包括了PyTorch上实现卷积神经网络CNN的方法的使用技巧和注意事项,需要的朋友参考一下 一、卷积神经网络 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被提出的
总体概览: 利用神经网络来进行手写识别就是将输入手写的数据经过一系列分析最终生成判决结果的过程。 使用的神经网络模型如下: 输入数据是像素为28 × 28 = 784的黑白图片(共55000张) 使用10位one-hot编码: 0 -> 1000000000 1 -> 0100000000 2 -> 0010000000 3 -> 0001000000 4 -> 0000100000 5 -> 0