PyTorch 是一个 Torch7 团队开源的 Python 优先的深度学习框架,提供两个高级功能:
强大的 GPU 加速 Tensor 计算(类似 numpy)
构建基于 tape 的自动升级系统上的深度神经网络
你可以重用你喜欢的 python 包,如 numpy、scipy 和 Cython ,在需要时扩展 PyTorch。
在粒度级别上,PyTorch 是一个由以下组件组成的库:
通常使用 PyTorch 是将其作为:
作为 numpy 的替代品,以使用强大的 GPU 能力;
一个深度学习研究平台,提供最大的灵活性和速度。
在本文中,我们将使用三阶 多项式(polynomial)来拟合曲线 y = s i n ( x ) y=sin(x) y=sin(x)。整个网络有四个参数,我们将会使用梯度下降算法最小化 网络输出 到 真实标签 的 欧几里得距离。 1 Tensor和numpy 1.1 使用numpy来拟合 Numpy提供了一个n维数组对象,以及许多用于操作这些数组的函数。Numpy是一个用于科学计算的通用框架;它
From and thanks to: github jcjohnson/pytorch-examples 本文通过自包含的示例介绍了PyTorch的基本概念,jcjohson的这些实例可以很好地帮助理解PyTorch与numpy、TensorFlow等之间的关系,以及其自己的概念和设计。 PyTorch的核心是两个主要特征: 1)一个n维Tensor,类似于numpy但可以在GP
本节将讨论优化与深度学习的关系,以及优化在深度学习中的挑战。在一个深度学习问题中,我们通常会预先定义一个损失函数。有了损失函数以后,我们就可以使用优化算法试图将其最小化。在优化中,这样的损失函数通常被称作优化问题的目标函数(objective function)。依据惯例,优化算法通常只考虑最小化目标函数。其实,任何最大化问题都可以很容易地转化为最小化问题,只需令目标函数的相反数为新的目标函数即可
torch是什么 torch就是诸多深度学习框架中的一种 业界有几大深度学习框架:1)tensorflow,谷歌主推,时下最火,小型试验和大型计算都可以,基于python,缺点是上手相对较难,速度一般;2)torch,facebook主推,用于小型试验,开源应用较多,基于lua,上手较快,网上文档较全,缺点是lua语言相对冷门;3)mxnet,大公司主推,主要用于大型计算,基于python和R,缺
图 图是一种数据结构,其中节点可以具有零个或者多个相邻的元素,两个节点之间的连接成为边。节点也可以成为顶点。 邻接表: 邻接表一般采用数组+链表的形式,数组表示各个顶点,链表中的元素表示该顶点与链表中的元素相连,与链表本身的指针没有关系。如上图 数组0 对应的链表1->3->4 表示0这个顶点与1 3 4这个顶点连接 数组1 表示1这个顶点与 0 2 4顶点相连以此类推 邻接矩阵和邻接表的区别 邻
主要内容 课程列表 专项课程学习 辅助课程 论文专区 课程列表 课程 机构 参考书 Notes等其他资料 卷积神经网络视觉识别 Stanford 暂无 链接 神经网络 Tweet 暂无 链接 深度学习用于自然语言处理 Stanford 暂无 链接 自然语言处理 Speech and Language Processing 链接 专项课程学习 下述的课程都是公认的最好的在线学习资料,侧重点不同,但推
Google Cloud Platform 推出了一个 Learn TensorFlow and deep learning, without a Ph.D. 的教程,介绍了如何基于 Tensorflow 实现 CNN 和 RNN,链接在 这里。 Youtube Slide1 Slide2 Sample Code
本文向大家介绍深度优先搜索,包括了深度优先搜索的使用技巧和注意事项,需要的朋友参考一下 图遍历是按某种系统顺序访问图的所有顶点的问题。遍历图主要有两种方法。 广度优先搜索 深度优先搜索 深度优先搜索(DFS)算法从顶点v开始,然后遍历到之前未访问过的相邻顶点(例如x),并将其标记为“已访问”,然后继续处理x的相邻顶点,依此类推。 如果在任何一个顶点上遇到所有相邻顶点都被访问过,则它将回溯直到找到具
主要内容:深度优先搜索(简称“深搜”或DFS),广度优先搜索,总结前边介绍了有关图的 4 种存储方式,本节介绍如何对存储的图中的顶点进行遍历。常用的遍历方式有两种: 深度优先搜索和 广度优先搜索。 深度优先搜索(简称“深搜”或DFS) 图 1 无向图 深度优先搜索的过程类似于树的先序遍历,首先从例子中体会深度优先搜索。例如图 1 是一个无向图,采用深度优先算法遍历这个图的过程为: 首先任意找一个未被遍历过的顶点,例如从 V1 开始,由于 V1 率先访问过了,所以
我太菜了,C++需要恶补才行,面试完基本上就知道自己寄,面试官特别好给我说了很多,也让我充分认识到自己的不足 如果是项目的话,会问你项目背景以及项目最终的实现结果等等 如果是自己学习的项目的话,会问你对这个项目的学习心得 最后问对C++对掌握程度 实现vector