在本文中,我们将使用三阶 多项式(polynomial)来拟合曲线 y = s i n ( x ) y=sin(x) y=sin(x)。整个网络有四个参数,我们将会使用梯度下降算法最小化 网络输出 到 真实标签 的 欧几里得距离。
Numpy提供了一个n维数组对象,以及许多用于操作这些数组的函数。Numpy是一个用于科学计算的通用框架;它不知道任何关于计算图形,或深度学习,或梯度。然而,我们可以很容易地使用numpy拟合一个三阶多项式到正弦函数,通过手动实现向前和向后通过网络使用numpy操作:
在这里,他把
(
−
π
,
π
)
(-\pi,\pi)
(−π,π)的每一个点都看成一个样本
import numpy as np
import math
# Create random input and output data
x = np.linspace(-math.pi, math.pi, 2000)
y = np.sin(x)
# Randomly initialize weights
a = np.random.randn()
b = np.random.randn()
c = np.random.randn()
d = np.random.randn()
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y
# y = a + b x + c x^2 + d x^3
y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss
loss = np.square(y_pred - y).sum()
if t % 100 == 99:
print(t, loss)
# Backprop to compute gradients of a, b, c, d with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_a = grad_y_pred.sum()
grad_b = (grad_y_pred * x).sum()
grad_c = (grad_y_pred * x ** 2).sum()
grad_d = (grad_y_pred * x ** 3).sum() #这里他把x看成了常数
# Update weights
a -= learning_rate * grad_a
b -= learning_rate * grad_b
c -= learning_rate * grad_c
d -= learning_rate * grad_d
print(f'Result: y = {a} + {b} x + {c} x^2 + {d} x^3') # 高端的str方法 注意""前面要加f
out:
可以看到loss在不断变小
99 389.2955786574181
199 261.1954465816545
299 176.26051930245407
399 119.9341007975008
499 82.5727709347305
599 57.78586900028154
699 41.337699655002055
799 30.42042429634584
899 23.172416743304044
999 18.35917888316839
1099 15.16192364986886
1199 13.037476547167149
1299 11.625423967751477
1399 10.68656530909325
1499 10.062108494276185
1599 9.646613042178068
1699 9.370045622202497
1799 9.185876749127825
1899 9.063183157151556
1999 8.981406695870641
Result: y = -0.005165911980452938 + 0.8452216269653127 x + 0.0008912057777745277 x^2 + -0.09169188085938515 x^3
Numpy是一个伟大的框架,但它不能利用gpu来加速它的数值计算。对于现代的深度神经网络,gpu通常提供50倍或更高的速度,因此numpy对于现代的深度学习来说是不够的。
在这里我们介绍最基本的点火概念:张量。一个PyTorch张量在概念上与一个numpy数组是相同的:一个张量是一个n维数组,PyTorch提供了许多作用于这些张量的函数。在幕后,张量可以跟踪计算图形和梯度,但作为科学计算的通用工具,它们也很有用。
同样与numpy不同的是,PyTorch张量可以利用gpu来加速它们的数值计算。要在GPU上运行PyTorch张量,只需指定正确的设备即可。
# -*- coding: utf-8 -*-
import torch
import math
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y
y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss
loss = (y_pred - y).pow(2).sum().item()
if t % 100 == 99:
print(t, loss)
# Backprop to compute gradients of a, b, c, d with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_a = grad_y_pred.sum()
grad_b = (grad_y_pred * x).sum()
grad_c = (grad_y_pred * x ** 2).sum()
grad_d = (grad_y_pred * x ** 3).sum()
# Update weights using gradient descent
a -= learning_rate * grad_a
b -= learning_rate * grad_b
c -= learning_rate * grad_c
d -= learning_rate * grad_d
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
在上面的例子中,我们必须手动实现神经网络的向前和向后传递。对于一个小型的两层网络来说,手动实现向后传递并不是一件大事,但是对于大型复杂的网络来说,可能很快就会变得非常麻烦。
幸运的是,我们可以使用自动微分来自动计算神经网络中的反向路径。PyTorch中的autograd包就提供了这种功能。当使用autograd时,网络的转发将定义一个计算图;图中的节点就是张量,边就是从输入张量产生输出张量的函数。然后通过这个图进行反向传播,就可以轻松地计算梯度。
如果x是一个张量,并且它的requires_grad=True,那么x.grad是另一个张量,它保持x对某个标量的梯度。
# -*- coding: utf-8 -*-
import torch
import math
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# Create random Tensors for weights. For a third order polynomial, we need
# 4 weights: y = a + b x + c x^2 + d x^3
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
a = torch.randn((), device=device, dtype=dtype, requires_grad=True)
b = torch.randn((), device=device, dtype=dtype, requires_grad=True)
c = torch.randn((), device=device, dtype=dtype, requires_grad=True)
d = torch.randn((), device=device, dtype=dtype, requires_grad=True)
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y using operations on Tensors.
y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss using operations on Tensors.
# Now loss is a Tensor of shape (1,)
# loss.item() gets the scalar value held in the loss.
loss = (y_pred - y).pow(2).sum()
if t % 100 == 99:
print(t, loss.item())
# Use autograd to compute the backward pass. This call will compute the
# gradient of loss with respect to all Tensors with requires_grad=True.
# After this call a.grad, b.grad. c.grad and d.grad will be Tensors holding
# the gradient of the loss with respect to a, b, c, d respectively.
loss.backward()
# Manually update weights using gradient descent. Wrap in torch.no_grad()
# because weights have requires_grad=True, but we don't need to track this
# in autograd.
with torch.no_grad():
a -= learning_rate * a.grad
b -= learning_rate * b.grad
c -= learning_rate * c.grad
d -= learning_rate * d.grad
# Manually zero the gradients after updating weights
a.grad = None
b.grad = None
c.grad = None
d.grad = None
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
在底层,每个原语autograd运算符实际上是两个作用于张量的函数。forward函数从输入张量计算输出张量。backward 接收到输出张量相对于某个标量值的梯度,然后计算输入张量相对于该标量值的梯度。
在PyTorch中,通过定义torch.autograd的子类,我们可以很容易地定义自己的autograd操作符。函数,并实现forward和backward函数。然后,我们可以通过构造一个实例并像调用函数一样调用它来使用新的autograd运算符,传递包含输入数据的张量。
在本例中,我们将模型定义为
y
=
a
+
b
P
3
(
c
+
d
x
)
y=a+bP_3(c+dx)
y=a+bP3(c+dx),其中,
P
3
(
x
)
=
1
/
2
∗
(
5
x
3
−
3
x
)
P_3(x)=1/2*(5x^3-3x)
P3(x)=1/2∗(5x3−3x),我们在这里定义了自己的 custom autograd function并操作于模型中:
# -*- coding: utf-8 -*-
import torch
import math
class LegendrePolynomial3(torch.autograd.Function):
"""
We can implement our own custom autograd Functions by subclassing
torch.autograd.Function and implementing the forward and backward passes
which operate on Tensors.
"""
@staticmethod
def forward(ctx, input):
"""
In the forward pass we receive a Tensor containing the input and return
a Tensor containing the output. ctx is a context object that can be used
to stash information for backward computation. You can cache arbitrary
objects for use in the backward pass using the ctx.save_for_backward method.
"""
ctx.save_for_backward(input)
return 0.5 * (5 * input ** 3 - 3 * input)
@staticmethod
def backward(ctx, grad_output):
"""
In the backward pass we receive a Tensor containing the gradient of the loss
with respect to the output, and we need to compute the gradient of the loss
with respect to the input.
"""
input, = ctx.saved_tensors
return grad_output * 1.5 * (5 * input ** 2 - 1)
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# Create random Tensors for weights. For this example, we need
# 4 weights: y = a + b * P3(c + d * x), these weights need to be initialized
# not too far from the correct result to ensure convergence.
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
a = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
b = torch.full((), -1.0, device=device, dtype=dtype, requires_grad=True)
c = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
d = torch.full((), 0.3, device=device, dtype=dtype, requires_grad=True)
learning_rate = 5e-6
for t in range(2000):
# To apply our Function, we use Function.apply method. We alias this as 'P3'.
P3 = LegendrePolynomial3.apply
# Forward pass: compute predicted y using operations; we compute
# P3 using our custom autograd operation.
y_pred = a + b * P3(c + d * x)
# Compute and print loss
loss = (y_pred - y).pow(2).sum()
if t % 100 == 99:
print(t, loss.item())
# Use autograd to compute the backward pass.
loss.backward()
# Update weights using gradient descent
with torch.no_grad():
a -= learning_rate * a.grad
b -= learning_rate * b.grad
c -= learning_rate * c.grad
d -= learning_rate * d.grad
# Manually zero the gradients after updating weights
a.grad = None
b.grad = None
c.grad = None
d.grad = None
print(f'Result: y = {a.item()} + {b.item()} * P3({c.item()} + {d.item()} x)')
计算图和autograd是定义复杂运算符和自动求导的非常强大的范例;然而对于大型神经网络来说,raw autograd可能有点太low了。
在构建神经网络时,我们经常考虑将计算安排成层,其中一些有可学习的参数,这些参数将在学习过程中得到优化。
在TensorFlow中,像Keras、TensorFlow- slim和TFLearn这样的包在原始计算图上提供了对构建神经网络很有用的高级抽象。
在PyTorch中,nn包也起到同样的作用。神经网络包定义了一组模块,大致相当于神经网络层。模块接收输入张量并计算输出张量,但也可以保存内部状态,例如包含可学习参数的张量。神经网络包也定义了一组有用的损失函数,通常在训练神经网络时使用。
在这里我们使用nn模块进行多项式的拟合:
# -*- coding: utf-8 -*-
import torch
import math
# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)
# For this example, the output y is a linear function of (x, x^2, x^3), so
# we can consider it as a linear layer neural network. Let's prepare the
# tensor (x, x^2, x^3).
p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)
# In the above code, x.unsqueeze(-1) has shape (2000, 1), and p has shape
# (3,), for this case, broadcasting semantics will apply to obtain a tensor
# of shape (2000, 3)
# Use the nn package to define our model as a sequence of layers. nn.Sequential
# is a Module which contains other Modules, and applies them in sequence to
# produce its output. The Linear Module computes output from input using a
# linear function, and holds internal Tensors for its weight and bias.
# The Flatten layer flatens the output of the linear layer to a 1D tensor,
# to match the shape of `y`.
model = torch.nn.Sequential(
torch.nn.Linear(3, 1),
torch.nn.Flatten(0, 1)
)
# The nn package also contains definitions of popular loss functions; in this
# case we will use Mean Squared Error (MSE) as our loss function.
loss_fn = torch.nn.MSELoss(reduction='sum')
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y by passing x to the model. Module objects
# override the __call__ operator so you can call them like functions. When
# doing so you pass a Tensor of input data to the Module and it produces
# a Tensor of output data.
y_pred = model(xx)
# Compute and print loss. We pass Tensors containing the predicted and true
# values of y, and the loss function returns a Tensor containing the
# loss.
loss = loss_fn(y_pred, y)
if t % 100 == 99:
print(t, loss.item())
# Zero the gradients before running the backward pass.
model.zero_grad()
# Backward pass: compute gradient of the loss with respect to all the learnable parameters of the model. Internally, the parameters of each Module are stored in Tensors with requires_grad=True, so this call will compute gradients for all learnable parameters in the model.
loss.backward()
# Update the weights using gradient descent. Each parameter is a Tensor, so
# we can access its gradients like we did before.
with torch.no_grad():
for param in model.parameters():
param -= learning_rate * param.grad
# You can access the first layer of `model` like accessing the first item of a list
linear_layer = model[0]
# For linear layer, its parameters are stored as `weight` and `bias`.
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')
到目前为止,我们已经通过使用torch.no_grad()手动改变持有可学习参数的张量来更新模型的权值。对于像随机梯度下降这样的简单优化算法来说,这不是一个巨大的负担,但在实践中,我们经常使用更复杂的优化器来训练神经网络,如AdaGrad, RMSProp, Adam等。
PyTorch中的optim包抽象了优化算法的思想,并提供了常用优化算法的实现。
在这个例子中,我们将像以前一样使用nn包来定义我们的模型,但是我们将使用optim包提供的RMSprop算法来优化模
# -*- coding: utf-8 -*-
import torch
import math
# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)
# Prepare the input tensor (x, x^2, x^3).
p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)
# Use the nn package to define our model and loss function.
model = torch.nn.Sequential(
torch.nn.Linear(3, 1),
torch.nn.Flatten(0, 1)
)
loss_fn = torch.nn.MSELoss(reduction='sum')
# Use the optim package to define an Optimizer that will update the weights of
# the model for us. Here we will use RMSprop; the optim package contains many other
# optimization algorithms. The first argument to the RMSprop constructor tells the
# optimizer which Tensors it should update.
learning_rate = 1e-3
optimizer = torch.optim.RMSprop(model.parameters(), lr=learning_rate)
for t in range(2000):
# Forward pass: compute predicted y by passing x to the model.
y_pred = model(xx)
# Compute and print loss.
loss = loss_fn(y_pred, y)
if t % 100 == 99:
print(t, loss.item())
# Before the backward pass, use the optimizer object to zero all of the
# gradients for the variables it will update (which are the learnable
# weights of the model). This is because by default, gradients are
# accumulated in buffers( i.e, not overwritten) whenever .backward()
# is called. Checkout docs of torch.autograd.backward for more details.
optimizer.zero_grad()
# Backward pass: compute gradient of the loss with respect to model
# parameters
loss.backward()
# Calling the step function on an Optimizer makes an update to its
# parameters
optimizer.step()
linear_layer = model[0]
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')
有时,您会希望指定比一系列现有模块更复杂的模型;对于这些情况,你可以通过子类化nn来定义你自己的模块。模块,并定义一个前向器,该前向器接收输入张量并使用其他模块或对张量进行其他autograd操作生成输出张量。
在这个例子中,我们实现了一个自定义模块子类的三阶多项式:
# -*- coding: utf-8 -*-
import torch
import math
class Polynomial3(torch.nn.Module):
def __init__(self):
"""
In the constructor we instantiate four parameters and assign them as
member parameters.
"""
super().__init__()
self.a = torch.nn.Parameter(torch.randn(()))
self.b = torch.nn.Parameter(torch.randn(()))
self.c = torch.nn.Parameter(torch.randn(()))
self.d = torch.nn.Parameter(torch.randn(()))
def forward(self, x):
"""
In the forward function we accept a Tensor of input data and we must return
a Tensor of output data. We can use Modules defined in the constructor as
well as arbitrary operators on Tensors.
"""
return self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
def string(self):
"""
Just like any class in Python, you can also define custom method on PyTorch modules
"""
return f'y = {self.a.item()} + {self.b.item()} x + {self.c.item()} x^2 + {self.d.item()} x^3'
# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)
# Construct our model by instantiating the class defined above
model = Polynomial3()
# Construct our loss function and an Optimizer. The call to model.parameters()
# in the SGD constructor will contain the learnable parameters of the nn.Linear
# module which is members of the model.
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-6)
for t in range(2000):
# Forward pass: Compute predicted y by passing x to the model
y_pred = model(x)
# Compute and print loss
loss = criterion(y_pred, y)
if t % 100 == 99:
print(t, loss.item())
# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Result: {model.string()}') # 调用model类的string函数
作为动态图和权值共享的一个例子,我们实现了一个非常奇怪的模型:一个三到五阶多项式,它在每次向前传递时选择一个3到5之间的随机数,并使用这么多阶数,重复使用相同的权值多次来计算四阶和五阶数。
对于这个模型,我们可以使用普通的Python流控制来实现循环,并且我们可以通过在定义前向传递时多次重用相同的参数来实现权重共享。
我们可以很容易地实现这个模型作为一个模块子类:
# -*- coding: utf-8 -*-
import random
import torch
import math
class DynamicNet(torch.nn.Module):
def __init__(self):
"""
In the constructor we instantiate five parameters and assign them as members.
"""
super().__init__()
self.a = torch.nn.Parameter(torch.randn(()))
self.b = torch.nn.Parameter(torch.randn(()))
self.c = torch.nn.Parameter(torch.randn(()))
self.d = torch.nn.Parameter(torch.randn(()))
self.e = torch.nn.Parameter(torch.randn(()))
def forward(self, x):
"""
For the forward pass of the model, we randomly choose either 4, 5
and reuse the e parameter to compute the contribution of these orders.
Since each forward pass builds a dynamic computation graph, we can use normal
Python control-flow operators like loops or conditional statements when
defining the forward pass of the model.
Here we also see that it is perfectly safe to reuse the same parameter many
times when defining a computational graph.
"""
y = self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
for exp in range(4, random.randint(4, 6)):
y = y + self.e * x ** exp
return y
def string(self):
"""
Just like any class in Python, you can also define custom method on PyTorch modules
"""
return f'y = {self.a.item()} + {self.b.item()} x + {self.c.item()} x^2 + {self.d.item()} x^3 + {self.e.item()} x^4 ? + {self.e.item()} x^5 ?'
# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)
# Construct our model by instantiating the class defined above
model = DynamicNet()
# Construct our loss function and an Optimizer. Training this strange model with
# vanilla stochastic gradient descent is tough, so we use momentum
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-8, momentum=0.9)
for t in range(30000):
# Forward pass: Compute predicted y by passing x to the model
y_pred = model(x)
# Compute and print loss
loss = criterion(y_pred, y)
if t % 2000 == 1999:
print(t, loss.item())
# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Result: {model.string()}')