page_type | languages | products | description | |||
---|---|---|---|---|---|---|
sample
|
|
|
Top-level directory for official Azure Machine Learning sample code and examples.
|
Welcome to the Azure Machine Learning examples repository!
directory | description |
---|---|
.github |
GitHub files like issue templates and actions workflows. |
cli |
Azure Machine Learning CLI (v2) examples. |
notebooks |
Jupyter notebooks with MLflow tracking to an Azure ML workspace. |
python-sdk |
Azure Machine Learning Python SDK (v1) examples. |
setup-ci |
Setup scripts to customize and configure an Azure Machine Learning compute instance. |
setup-repo |
Setup scripts for Azure/azureml-examples. |
We welcome contributions and suggestions! Please see the contributing guidelines for details.
This project has adopted the Microsoft Open Source Code of Conduct. Please see the code of conduct for details.
An implementation of the @handsontable/react wrapper.import React from 'react'; import ReactDOM from 'react-dom'; import { HotTable } from '@handsontable/react'; import Handsontable from 'handsontable
通用范例/范例七: Face completion with a multi-output estimators http://scikit-learn.org/stable/auto_examples/plot_multioutput_face_completion.html 这个范例用来展示scikit-learn如何用 extremely randomized trees, k neares
http://scikit-learn.org/stable/auto_examples/missing_values.htm 在这范例说明有时补充缺少的数据(missing values),可以得到更好的结果。但仍然需要进行交叉验证。来验证填充是否合适 。而missing values可以用均值、中位值,或者频繁出现的值代替。中位值对大数据之机器学习来说是比较稳定的估计值。 (一)引入函式库及内
http://scikit-learn.org/stable/auto_examples/plot_isotonic_regression.html 迴归函数採用递增函数。 y[] are inputs (real numbers) y_[] are fitted 这个范例的主要目的: 比较 Isotonic Fit Linear Fit (一) Regression「迴归」 「迴归」就是找一个函
http://scikit-learn.org/stable/auto_examples/feature_stacker.html 在许多实际应用中,会有很多方法可以从一个数据集中提取特征。也常常会组合多个方法来获得良好的特征。这个例子说明如何使用FeatureUnion 来结合由PCA 和univariate selection 时的特征。 这个范例的主要目的: 资料集:iris 鸢尾花资料集
通用范例/范例一: Plotting Cross-Validated Predictions http://scikit-learn.org/stable/auto_examples/plot_cv_predict.html 资料集:波士顿房产 特征:房地产客观数据,如年份、平面大小 预测目标:房地产价格 机器学习方法:线性迴归 探讨重点:10 等分的交叉验証(10-fold Cross-Vali