ScikitLearn.jl implements the popularscikit-learn interface and algorithms inJulia. It supports both models from the Julia ecosystem and those of thescikit-learn library(via PyCall.jl).
Would you rather use a machine-learning framework specially-designed for Julia? Check out MLJ.jl, from the Alan Turing institute.
Disclaimer: ScikitLearn.jl borrows code and documentation fromscikit-learn, but it is not an official partof that project. It is licensed under BSD-3.
Main features:
Check out the Quick-StartGuide for atour.
To install ScikitLearn.jl, type ]add ScikitLearn
at the REPL.
To import Python models (optional), ScikitLearn.jl requires the scikit-learn Python library, which will be installed automatically when needed. Most of the examples use PyPlot.jl
See the manual andexample gallery.
ScikitLearn.jl aims for feature parity with scikit-learn. If youencounter any problem that is solved by that library but not this one, file anissue.
之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结。这里我们就从实战的角度来看朴素贝叶斯类库。重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择。 一、scikit-learn 朴素贝叶斯类库概述 朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单。相对于决策树,KNN之类的算法,朴素贝叶斯需要关注的参数是