当前位置: 首页 > 知识库问答 >
问题:

卷积神经网络中的批归一化

关宏毅
2023-03-14

我是卷积神经网络新手,对特征映射和如何在图像上进行卷积来提取特征有概念。我很高兴知道一些关于在CNN应用批量标准化的细节。

我知道什么是特征图和不同的元素是权重在每一个特征图。但我不能理解什么是位置或空间位置。

我完全不能理解下面的句子“在alg.1中,我们让B是一个特征映射中的所有值的集合,它跨越了一个小批处理的元素和空间位置。”

如果有人能用更简单的术语来解释我,我会很高兴的

共有1个答案

戚浩淼
2023-03-14

让我们从条款开始。记住,卷积层的输出是一个4秩张量[B,H,W,C],其中B是批处理大小,(H,W)是特征映射大小,C是通道数。索引(x,y),其中0<=x 0<=y 是空间位置。

现在,下面是batchnorm是如何以通常的方式应用的(在伪代码中):

# t is the incoming tensor of shape [B, H, W, C]
# mean and stddev are computed along 0 axis and have shape [H, W, C]
mean = mean(t, axis=0)
stddev = stddev(t, axis=0)
for i in 0..B-1:
  out[i,:,:,:] = norm(t[i,:,:,:], mean, stddev)

基本上,它计算h*w*c元素之间的h*w*c均值和h*w*c标准差。您可能会注意到,位于不同空间位置的不同元素具有各自的均值和方差,并且只收集b值。

下面是这种情况下的代码(同样是伪代码):

# t is still the incoming tensor of shape [B, H, W, C]
# but mean and stddev are computed along (0, 1, 2) axes and have just [C] shape
mean = mean(t, axis=(0, 1, 2))
stddev = stddev(t, axis=(0, 1, 2))
for i in 0..B-1, x in 0..H-1, y in 0..W-1:
  out[i,x,y,:] = norm(t[i,x,y,:], mean, stddev)

总的来说,只有c均值和标准差,每一个均值和标准差都是通过b*h*w值计算出来的。这就是他们所说的“有效的小批量”的意思:两者的区别仅在轴选择(或等价的“小批量选择”)上。

 类似资料:
  • 注意: 本教程适用于对Tensorflow有丰富经验的用户,并假定用户有机器学习相关领域的专业知识和经验。 概述 对CIFAR-10 数据集的分类是机器学习中一个公开的基准测试问题,其任务是对一组大小为32x32的RGB图像进行分类,这些图像涵盖了10个类别: 飞机, 汽车, 鸟, 猫, 鹿, 狗, 青蛙, 马, 船以及卡车。 想了解更多信息请参考CIFAR-10 page,以及Alex Kriz

  • 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网络由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网络能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网络

  • 在了解了机器学习概念之后,现在可以将注意力转移到深度学习概念上。深度学习是机器学习的一个分支。深度学习实现的示例包括图像识别和语音识别等应用。 以下是两种重要的深度神经网络 - 卷积神经网络 递归神经网络 在本章中,我们将重点介绍CNN - 卷积神经网络。 卷积神经网络 卷积神经网络旨在通过多层阵列处理数据。这种类型的神经网络用于图像识别或面部识别等应用。CNN与其他普通神经网络之间的主要区别在于

  • 主要内容:卷积神经网络深度学习是机器学习的一个分支,它是近几十年来研究人员突破的关键步骤。深度学习实现的示例包括图像识别和语音识别等应用。 下面给出了两种重要的深度神经网络 - 卷积神经网络 递归神经网络。 在本章中,我们将关注第一种类型,即卷积神经网络(CNN)。 卷积神经网络 卷积神经网络旨在通过多层阵列处理数据。这种类型的神经网络用于图像识别或面部识别等应用。 CNN与任何其他普通神经网络之间的主要区别在于CNN

  • 注意: 本教程适用于对Tensorflow有丰富经验的用户,并假定用户有机器学习相关领域的专业知识和经验。 概述 对CIFAR-10 数据集的分类是机器学习中一个公开的基准测试问题,其任务是对一组32x32RGB的图像进行分类,这些图像涵盖了10个类别: 飞机, 汽车, 鸟, 猫, 鹿, 狗, 青蛙, 马, 船以及卡车。 想了解更多信息请参考CIFAR-10 page,以及Alex Krizhev

  • 在“多层感知机的从零开始实现”一节里我们构造了一个含单隐藏层的多层感知机模型来对Fashion-MNIST数据集中的图像进行分类。每张图像高和宽均是28像素。我们将图像中的像素逐行展开,得到长度为784的向量,并输入进全连接层中。然而,这种分类方法有一定的局限性。 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。 对于大尺寸的输入图像,使用全连接层容易造成模型过大