目标检测部分包括对机器人检测和装甲板检测,要求准确率和检测帧率可以达到实时效果,我们的目标检测算法基于anchor-base算法框架SSD(Single Shot MultiBox Detector),SSD框架对于轻量级主干网络,小目标检测效果不够理想,但是我们经过结构调整之后,整体算法效果有了惊人提升,我们采用的backbone基于mobilenet-v3,并进行一些改进,使其可以适应size
##好未来#秋招:一面面经,应该是凉经,趁着热乎记录一下。 1、30分钟的项目,根据你的简历上的项目进行提问,问的地方比较细,也会问你对这个方向的一些看法和理解。 2、5分钟左右的八股,但是这个八股主要还是涉及到多模态大模型的部分,我不太了解,只是在一个项目中用过多模态大模型,所以这部分比较快 3、手撕,竟然没手撕力扣的,手撕一个分割的评价指标,我主要做检测的,分割很久不碰了,不过在帮助下还是磕磕
自我介绍,双方的,(我对阿里国际确实不了解) 问想要未来工作的base地 先来两道题,leetcode 11。leetcode爬楼梯 介绍一篇论文 知道vit吗 知道多模态吗 反问:1.卡多少(一千多张H100) 2.做什么(虚拟试衣,多模态,基座大模型)3. hc多少,暑期实习有10个,卡不能停找的人会比较多 4. 做research吗?(是的,一年以来业务做的很多了,现在需要技术的攻关) 全程
4.15笔试,4.19一面,4.25二面,4.29接邮件通知4.30三面(主管面) 为什么算不上面经,因为我觉得太简单了...对...太简单了,不是凡尔赛而是真的简单到让我汗流浃背。 个人情况:bg不错,实习对于算法来说不够垂直(我在互联网到处乱窜),做题不行(被笔试挂麻了),八股不行,面试沟通一般比较顺利 一面大概一小时,没问八股,一直在聊论文(二作在投还没中,nlp相关)和实习项目的细节,一直
问题内容: 考虑到您可以(无法想到一种放置它的好方法,但是)在Go中操作指针,是否有可能像在C中那样执行指针算术,例如遍历数组?我知道循环对于这些事情来说现在很好,但是我很好奇是否可能。 问题答案: 否。来自“常见问题解答”: 为什么没有指针算术? 安全。如果没有指针算术,就有可能创建一种永远不会派生出不正确地址的语言。编译器和硬件技术已经发展到可以使用数组索引的循环与使用指针算术的循环一样高效的
问题内容: 我正在尝试使用JSch(0.1.44-1)通过ssh连接到远程sftp服务器,但是在“ session.connect();”期间 我收到此异常: 来自JSch的日志: 我可以使用linux sftp命令登录到远程服务器。我试图在互联网上找到任何线索,但是失败了。 linux sftp命令的调试输出: 问题答案: SSH客户端和服务器在几个地方尝试并同意一个通用实现。我知道的两个是加密
问题内容: 什么是高/低算法? 我已经在NHibernate文档中找到了这一点(这是生成唯一密钥的一种方法,第5.1.4.2节),但是我没有找到有关其工作原理的很好的解释。 我知道Nhibernate可以处理它,并且我不需要了解内部,但是我很好奇。 问题答案: 基本思想是,您有两个数字组成主键-“高”数字和“低”数字。客户端可以从本质上增加“高”序列,知道它随后可以安全地从先前的“高”值的整个范围
本文向大家介绍KMP 算法实例详解,包括了KMP 算法实例详解的使用技巧和注意事项,需要的朋友参考一下 KMP 算法实例详解 KMP算法,是由Knuth,Morris,Pratt共同提出的模式匹配算法,其对于任何模式和目标序列,都可以在线性时间内完成匹配查找,而不会发生退化,是一个非常优秀的模式匹配算法。 分析:KMP模板题、KMP的关键是求出next的值、先预处理出next的值、然后一遍扫过、复
问题内容: 我的数据库中有下表。 每个人在工作中均按不同的属性/标准(称为“ prop”)进行排名,而绩效则称为“等级”。如示例所示,该表包含(name,prop)的多个值。我想从某些要求中获得最佳人选。例如,我需要具有和的候选人。然后,我们必须能够按候选人的排名对他们进行排序,以获得最佳候选人。 编辑:每个人都必须满足所有要求 如何在SQL中执行此操作? 问题答案:
本文向大家介绍Java抽奖抢购算法,包括了Java抽奖抢购算法的使用技巧和注意事项,需要的朋友参考一下 本文示例为大家分享了Java抽奖抢购算法,供大家参考,具体内容如下 应用场景 单件奖品抢购(可限时) 多件奖品按概率中奖(可限时、可不限量) 代码实现 表结构: 代码: 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。
主要内容:1. 广度优先搜索,2. 深度优先搜索,3. 深度有限搜索算法,4. 统一成本搜索算法,5. 迭代深化深度搜索,6. 双向搜索算法不知情的搜索是一类通用搜索算法,它以强力方式运行。除了如何遍历树之外,不知情的搜索算法没有关于状态或搜索空间的附加信息,因此它也称为盲搜索。 以下是各种类型的无知搜索算法: 广度优先搜索 深度优先搜索 深度限制搜索 迭代加深深度优先搜索 统一成本搜索 双向搜索 1. 广度优先搜索 广度优先搜索是遍历树或图的最常见搜索策略。此算法在树或图中搜索横向,因此称为广
主要内容:什么是范数?,回归类算法,实现Logistic回归在 Scikit-Learn 机器学习库中,有关线性模型的算法族都在 模块下,不同的算法又会分化为很多类,但它们都是经过几种基本算法调整和组合而成,因此基本上都是 大同小异,换汤不换药,下面介绍经常用到回归类算法,其中就包含了 Logistic 回归算法。在这之前我们需要先熟悉几个概念,比如“正则化”。 什么是范数? 范数又称为“正则项”,它是机器学习中会经常遇到的术语,它表示了一种运算方式,“范
主要内容:分类数据表示形式,Logistic函数数学解析,梯度上升优化方法在 《Logistic回归算法(分类问题)》一节,我们学习了 Logistic 回归算法,并且重点认识了 Logistic 函数。我们知道分类问题的预测结果是离散型数据,那么我们在程序中要如何表述这些数据呢,再者我们要如何从数学角度理解 Logistic 算法,比如它的损失函数、优化方法等。 分类数据表示形式 1) 向量形式 在机器学习中,向量形式是应用最多的形式,使用向量中的元素按顺序代表“类别
主要内容:迪杰斯特拉算法的实现思路,迪杰斯特拉算法的具体实现迪杰斯特拉算法用于查找图中某个顶点到其它所有顶点的最短路径,该算法既适用于无向加权图,也适用于有向加权图。 注意,使用迪杰斯特拉算法查找最短路径时,必须保证图中所有边的权值为非负数,否则查找过程很容易出错。 迪杰斯特拉算法的实现思路 图 1 是一个无向加权图,我们就以此图为例,给大家讲解迪杰斯特拉算法的实现思路。 图 1 无向加权图 假设用迪杰斯特拉算法查找从顶点 0 到其它顶点的最短路径,具体过
主要内容:克鲁斯卡尔算法的具体实现在连通网中查找 最小生成树的常用方法有两个,分别称为 普里姆算法和克鲁斯卡尔算法。本节,我们给您讲解克鲁斯卡尔算法。 克鲁斯卡尔算法查找最小生成树的方法是:将连通网中所有的边按照权值大小做升序排序,从权值最小的边开始选择,只要此边不和已选择的边一起构成环路,就可以选择它组成最小生成树。对于 N 个顶点的连通网,挑选出 N-1 条符合条件的边,这些边组成的生成树就是最小生成树。 举个例子,图 1 是