1. 全程问项目相关,没有任何一个八股问题,项目要非常熟悉,会进行扩展。 2. 开放性问题比较多,要能自圆其说。 3. 算法题是和编解码相关的。 #快手##快手信息集散地##音视频#
更新:一面已通过 —— 开场先调了五分钟设备,问了15分钟,最后10分钟做题。面试官全程强调HC紧张,30分钟结束,感觉寄了。第一次写面经,攒攒人品。 开场: -自我介绍 -你之前面过我们部门三轮技术面面评都不错,最后为啥挂了?(我也想问) 项目: 深挖实习项目(其实感觉也不深,就问了15分钟),包括业务场景、模型、样本构造、特征工程方面 算法题: 都是力扣原题 -链表公共节点 -和为target
45min面试分成三部分 1)项目介绍 广告公司实习,用多元回归看哪个广告平台对收入影响最大。 问:模型有什么问题和改进方法?答:依靠经验判断哪些特征有用,也许神经网络会好。问:你有实行这个改进么?答:没有。(羞愧) 科研项目,神经网络判断哪个SSD延迟更低。 问:用了什么样的模型,是否特征筛查。问:你知道什么业界的特征筛选发放么。答:我只知道便利所有特征组合。(相关矩阵) 2)机器学习问题 问:
1. 介绍一下你自己; 2. 聊了感兴趣的一个项目; 3. 先来做两道题。 买卖股票最佳时间【只能买一次】 和 【必须买两次】(变种,利润可以是负数); 4. 介绍实习经历,问的很细,将广告的整套流程都问清楚了; 5. 你知道什么是RTA吗?(广告投放策略Real-Time API) 6. 八股-过拟合是什么原因导致的?有什么解决方法(答了图像增强、正则化、降低模型复杂度、训练集扩充), 7、BN
上来先自我介绍然后让自己挑一个项目介绍。后续面试官问了很多问题 1 特征工程如何做 2 特征筛选都有哪些介绍一下 3 随机森林原理 4 支持向量机介绍一下 5 深度学习框架会哪些介绍一下 6 transformer介绍 7 attention机制都有哪些介绍一下 8 lstm原理以及相比于rnn的优势 9 时间序列预测都有哪些方法 10 介绍一下arima算法 11 数据库都会哪些 12 深度学习
奇安信 计划研究院 算法工程师 一面 40min 11.06 1.介绍了三段实习实习经历,里面用到的模型的原理,改进方法等 聊了20min 2.刚收到图像的训练数据,怎么进行处理 3.Yolov5的主要改进点 4.介绍特征金字塔,以及为什么它能提升模型的效果 5.介绍Centernet模型 6.anchor free比 anchor base有什么优缺点 7.Python列表去重的方法 8.Pyt
https://zhuanlan.zhihu.com/p/665595011 Boss直聘 算法工程师 一面 11.06 项目介绍 画出Lstm的结构图,并进行说明 Lstm用的激活函数是什么?相比sigmoid有什么优势? 介绍Rcnn。为什么它速率较慢 C++内存泄露的原因 Python哪些对象是可变的,哪些是不可变的,怎么判断 Coding y = np.array([1, 1, 1, 1,
一面 11.23(有些问题忘了) 44min 自我介绍 详细讲解下目前做的项目(diffusion相关) 为什么网络结构要这样设计 与ip-adapter有什么不同 有没有效果展示(展示了下效果,面试官说不错) 了不了解GAN GAN和diffusion的区别 了解模型部署相关的知识吗(不了解) 写题: 力扣-704 写一个含有三层卷积层的10分类神经网络,写出每层的shape输出 反问: 对我这
总共三十分钟左右,面试官人很好,没太多拷打,整体面试感觉不错 1.自我介绍 2.拷打实习项目,先让我整体介绍了一下,然后问了包括数据构建、模型规模、模型怎么训的、模型部署推理时延、模型怎么量化的等,然后问了一些包括用户输入一些攻击模型的话语怎么办、模型输出攻击性话语怎么办、模型幻觉怎么解决等问题 3.代码题,两道,一道全排列,一道连续子数组最大乘积 4.反问,问部门业务,说是做智慧座舱的 #软件开
一面 1. 逐个介绍项目,问的很详细 2. 从公式的角度说明一下L2损失为什么会平滑 3. 解决模型过拟合的方法 4. 为什么L1正则化可以缓解过拟合 5. 代码 (1)快排 (2)手写卷积 #2023秋招##算法工程师#
10月12日 一面 30 min 技术面 一、自我介绍 二、 深挖项目、主要负责哪块? 三、ICP流程 四、C++掌握如何 五、对ORBSLAM2的理解 六、了解激光SLAM吗 七、深度学习模型做了什么? 八、约了第二天的手撕代码。。。。哎。。。终归是我不配了,一个一面都好难啊 估计自己面试表现太差了 #零跑科技##2023校招##面经##零跑科技校招#
今年面试难度top给中邮 虽然只有十五分钟,感觉硬核程度高于大厂n倍 简历主要nlp 1.自我介绍,项目介绍 2.文本阅读理解中,如果原文有相关的语义描述,但需要抽取的实体本身不在原文中,需要怎么做? 3.介绍一下t5,和GPT有什么区别和联系 4.讲讲基于对比学习的词嵌入方法(simCSE,不久前的顶会) 5.除了bert以外,还有哪些预训练词嵌入? 麻了,nlp卷成这样了吗
Bert的模型架构讲一下? BERT模型的全称是:BidirectionalEncoder Representations from Transformer,也就是说,Transformer是组成BERT的核心模块,而Attention机制又是Transformer中最关键的部分,因此,利用Attention机制构建Transformer模块,在此基础上,用多层Transformer组装BERT模
听说写面经可以多拿offer 小红书一共是三轮技术面+HRBP面,整个面试体验很好,官网投完简历两天就面试了,结果出的也很快,几轮的面试官人都很nice。 一面,一小时左右: 首先是做自我介绍,这个可以提前准备一下 介绍简历中写的论文,讲的过程中面试官会提一些问题,问的蛮中肯的,也提了一些建议,沟通很愉快。会问下做的东西在工业界有没有一些应用场景,可以发散的聊一聊 问了下之前在美团实习主要是做些什
双非本985硕,icpc银,一篇一区论文 先自我介绍 1. 介绍其中一篇论文 2. 你的论文结果和其他人的有什么优势? 3. 如何提升这个项目?(换模型,提升并发度) 4. Yolo的正负样本是什么?(与所有真实标签iou都小于阈值的预测框为负样本,反之为正样本) 5. 模型压缩和加速的方法有哪些?(gpu、蒸馏、剪枝、半精度) 6. 半精度是什么?(舍弃后16bit的半浮点数) 7. 半精度的理