流程是:自我介绍-项目询问-企业观感-反问 整体感觉还可以,全是围着简历项目问的,其他问题基本没有。 希望进二面!
🕒岗位/面试时间 1小时30分钟 1、自我介绍 2、讲一下kaggle金 方案,围绕着一个比赛扣细节 3、围绕天池/miccai workshop比赛展开 3、Gem代替global avg pool动机,Gem公式,代码实现 4、BN公式、其中可学习参数的意义 5、手撕Focal Loss 6、手撕Crop(提供一个中心点,和裁剪的宽高,要防止越界等异常情况) 7、反问 已发下一面时间
快手机器学习算法工程师一面50min 人生中第一次找工作面试😭 (面试官姐姐人超好😭,一直心平气和的和聊天一样,我说错了也没说我而是跟我解答,甚至帮我找理由,全程都很耐心) 1.自我介绍 2.介绍用过哪些机器学习方法 3.SVM的原理跟优势 4.集成学习(扯了下随机森林跟集成学习原理),XGBOOST(没用过) 5.knn和kmeans做分类的原理 6.你们做的遥感图像怎么提取特征 7.问了下
游卡两次面试都很舒服,全程没有push,面试官人都很好,我觉得游卡是一个氛围很不错的 一面 30min 像是技术主管面 1、问项目 2、问之前的数据处理是怎么做的(一个时序数据) 3、问模型如何优化(答数据方面) 4、介绍了一下当前的业务,问我如何用神经网络处理(因为我没有接触过强化学习,所以让我用MLP解决,很贴心了) 问了不同情况如何处理,如欠拟合等 5、反问:我能不能接触到强化学习的内容,我
大概率挂了,问的问题不难但是我一个Python选手c++懂得确实不多,发个面经赞赞人品 1.拷打项目 因为项目里有提到ssd yolo和pointnet 就询问了怎么做的调整,使用过程中遇到了哪些问题,怎么解决的,然后问有没有了解过别的目标追踪网络,还有点云网络pointpillar (其实了解过,工业上用的比较多,但是一紧张忘记了) 2.八股 Python字典的key可以用哪些数据类型✓ 为什
岗位 视觉算法工程师 一面 针对项目进行提问,问的比较细,要对每一点说出为什么 深度学习算法相比于传统算法在去噪上有什么优势 了解傅里叶变换吗,蝶形计算快在哪里 了解量化吗 BN有什么用,为什么可以加速训练 label smooth为什么可以提高精度 介绍一下深度可分离卷积,深度可分离卷积和普通卷积的计算量对比 代码:应用题,二分查找的应用 #2023校招##计算机视觉算法工程师#
联想:2022 秋招 算法工程师 面试 一面 项目 是否了解 GDBT 等推荐算法 分类问题的交叉熵、是否可以用MSE 不可以。主要原因如下: 物理意义上,MSE 衡量的是几何空间的欧氏距离,而分类问题中每个类别的标签是离散的 和 ,本身不具备几何空间的意义; 信息学中,交叉熵衡量的是两个分布之间的差异,可用于衡量模型预测的概率分布和真实标签的类别分布是否相似。 计算上,分类模型输出的概率一般会经
中秋节前一天 一面(初试) 30分钟 没开摄像头,是在京东的会议平台上面的 深挖简历,主要问了项目与竞赛 八股文集中于大数据方面:spark与map reduce之间的差别、spark与flink区别、flink水位线等,有些问题不记得了,但基本都答上来了 没有手撕 反问:业务、匹配程度 ------------------------ 已挂 #京东##算法工程师#
岗位:人工智能类-算法工程师 HR一面 (9/8)- 15min 常规的HR面 自我介绍 选一个收获最大的项目进行介绍 沟通的能力 对海尔智家的理解 能否接受青岛 反问 技术二面 (9/15)- 15min 比约定时间晚了一些,可能是前面人面的时间超过15分钟了。 自我介绍 介绍项目(时间占比大) 平时所使用的语言,会不会c,c++ 接触过嵌入式开发吗 职业规划 反问 部门主要做嵌入式开发?(感觉
8.2 测评 8.26 一面 所有项目逐个介绍(细挖) ResNet中的BottleNeck结构 9.7 HR面 自我介绍 项目介绍 家庭情况 父母对自己工作的期望 研究所和企业工作的选择 职业规划 对象问题 读研期间导师对自己的影响 自己的性格介绍 自己的缺点 薪资意向 岗位的理解 反问 9.28 录用评估 #海康面试#
8.18 测评 9.6 一面 项目1介绍 逻辑回归简介 极大似然法简介 反问 KPI面...面完了面试官说他们是做加密的,不懂为什么让我面... #小米面试#
自我介绍 了解公司吗 项目相关 过拟合解决方法、有遇到过拟合吗?怎么解决 传统的图像特征提取方法有哪些 通道注意力和特征注意力 场景题: 如果知道1000个人上班是否会乘坐地铁?不可以直接去询问个人。给出具体的思考和结果得出过程。 反问 #面经一面面经##商米##图像算法##算法工程师#
职位:深度学习算法工程师 base:上海 技术一面 (9/15) - 30min 自我介绍 项目介绍,随后围绕项目进行展开提问,会议论文与期刊论文之间的差异 反问 部门主要做感知(车道线、行人感知。。。 技术二面 (9/21) - 30min 没开摄像头 自我介绍 项目介绍,所有项目都介绍了一遍 中途会被打断问问题 反问 对除了自己所研究的方向外,还了解哪些,知不知道reid的方法、目标检测算法什
总体感受:泡池子前华为HR还是很热情的,泡池子后就是“嗯嗯”;另外,我遇到的每一个华为人语速都好快,莫非是push得太严重了 ———————————————————————————— 8.31 裸考,挂了 9.5 HR打电话说我符合免机考的条件,我赔笑说都怪自己太菜了 9.24 通知准备参加面试 ———————————————————————————— 9.29下午两点
背景:211本硕,一作SCI一区论文两篇,无实习。 这次秋招的第一场面试,也是最硬核的一场。虽然面的很烂,但是真的学到了很多(意识到了自己有多菜),记录一下回馈社区。 一面(8.23) 1. 自我介绍; 2. 了解社区检测吗(了解过),了解哪些算法(Louvain, LPA); 3. Louvain算法的算法流程(比较简单); 4. Louvain算法是用模块度来优化对吧,那模块度怎么改进呢(模块