这一节我们来看看requests是如何发送一个request的,这一节内容可能比较多,有很多底层代码,我自己也看的头疼,建议阅读前先喝瓶酸奶以保持轻松的心情。如果你准备好了,请往下看。 我们在Pycharm中按住win点击get,会来到get方法的源码: def get(url, params=None, **kwargs): r"""Sends a GET request. :
传统习惯 上高清无码自制大图: 不需要理解图中各个类的功能, 大致扫一眼留一下印象。 State组件中有三个比较重要的地方,一个是State这个结构, 一个是BlockExector,还有一个是Store。 我们先看State结构。 它代表了区块的状态。 看一下它的详情数据结构: type State struct { //链ID 整个链中都是不会变化的 ChainID strin
基本组件说明 P2P模块涉及的最重要的组件如上图所示, 上述的UML图并没有列出某个类的所有属性和方法,只是列举了我认为比较重要的部分。 第一眼看到上面的类图我猜应该是什么也看不出来。 再仔细看我想依然是云山雾绕不知道整个P2P的流程。 所以类图只是给大家一个基本的组件印象。让大家能大致猜测一下各个组件的功能。 现在我们不妨按着上面的类图去大胆猜一猜上述的各个组件的功能。 我们先从Switch这个
老规矩,先上图。 内存池的作用简而言之就是为了保存从其他peer或者自身受到的还未被打包的交易。 我们看一下mempool的文件夹。 所以我们关注的内存池的源码其实只有mempool.go和reactor.go文件。 从源文件名称应该可以看出来MemPool的成员方法是在mempool.go文件中, 和peer信息信息的交互应该是在reactor.go文件中的。 在mempool.go文件中看到这
老规矩,先上类图。 (虽然我知道看上去啥也看不出来) 然后顺便看一下blockchain模块的文件目录 也就是说blockchain模块我们只需要看pool.go store.go和reactor.go模块 根据名字猜功能,pool 猜想是存储区块的区块池,对多个区块进行管理的? store.go应该是和数据库进行相关操作的代码。 reactor.go就显而易见就是和Peer进行通信实现React
提示 GatewayWorker提供的所有接口都是支持分布式调用的,所以业务代码不需要任何更改,直接就可以分布式部署。
性能分析 StackExchange.Redis 公开了少量的方法和类型来开启性能分析。由于其异步性和多路复用行为,性能分析是一个有点复杂的话题。 接口 性能分析接口是由这些组成的:IProfiler,ConnectionMultiplexer.RegisterProfiler(IProfiler),ConnectionMultiplexer.BeginProfiling(object), Con
Partitioning users with realms (用户区分) 默认情况下, User Model 管理所有用户在一个全局命名空间. 它不隔离不同的应用程序. 在某些情况下, 需要在让不同的用户拥有一些不同的命名空间. Loopback 支持领域划分: Users 和 applications 属于 一个全局的领域(或者说是没有领域). 将用户和 applications 规划到不同的
引入 import { createApp } from 'vue'; import { TreeSelect } from 'vant'; const app = createApp(); app.use(TreeSelect); 代码演示 单选模式 item 为分类显示所需的数据,数据格式见下方示例。main-active-index 表示左侧高亮选项的索引,active-id 表示右侧高
介绍 底部弹起的分享面板,用于展示各分享渠道对应的操作按钮,不含具体的分享逻辑。2.6 版本开始支持此组件。 引入 import { createApp } from 'vue'; import { ShareSheet } from 'vant'; const app = createApp(); app.use(ShareSheet); 代码演示 基础用法 分享面板通过 options 属
这里所说的分页,指的是大量数据显示时,每页显示固定的数量的数据,同时显示多个分页链接,用户点击翻页链接或页码时进入到对应的网页。 分页算法中需要处理的问题: (1)当前数据一共有多少条。 (2)每页多少条,算出总页数。 (3)根据总页数情况,处理翻页链接。 (4)对页面上传入的 Get 或 Post 数据,需要从翻页链接中继续向后传。 (5)在页面显示时,根据每页数量和当前传入的页码,设置查询的
留存分析是一种用来了解用户留存情况的分析模型,是衡量产品对用户价值高低的重要指标。产品在经过了拉新和用户流失后,那些依旧留下来持续使用的人就称之为留存。只有做好了留存分析,保证了留存,才能使新用户在注册后不会白白流失。 自定义留存 初始化事件:最好选择用户只触发一次的事件。诸如“注册”、“加入我们”、“上传头像”等等; 回访事件:应设定成用户经常触发,重复激活的行为。诸如“购买”、"评论"、“预订
路径分析通过抽象用户在小程序中的访问行为轨迹,并用可视化图表呈现,帮助使用者了解用户在小程序上的流动情况。 全路径图 以某个页面/事件为起点进行分析的路径图,帮助我们了解用户从某个起点开始的行为轨迹。 时间维度:今日之前,最大时间周期可选择1个月; 选择分析对象:可选择起始浏览页面or起始互动事件作为分析对象; 起始浏览页面:以小程序某一个页面作为分析起点,分析用户之后到过哪些网页; 起始互动事件
漏斗是进行转化分析的重要工具。Jice为您提供的自定义步骤漏斗分析,可以让您明确用户在核心转化点的流失和转化情况。同时借助强大的多维分析功能,可以更加明确在哪些情况下该转化突然变低,也可按照某一维度细分查看结果。Jice漏斗分析,助您发现关键流失步骤,优化流程,提升转化表现。 创建漏斗 漏斗名称:自定义名称(必填),相同小程序漏斗名称不能相同; 转化周期:即用户触发初始事件后完成漏斗的期限,未在规
事件分析是通过各种维度组合和过滤条件来分析用户的互动数据,发掘关键互动优化互动引导,提升互动转化率; 及策不仅可以将小程序内任意互动定义为事件,而且可以对该事件追加属性,如加入购物车,可以对其追加:加入购物车的商品名称、商品价格、商品数量等属性。这样分析的时候就可以得到加入购物车的次数,也可以明确接入购物车的具体商品的统计; 事件概览 时间维度:实时查看所有事件数据,支持查看近3个月数据; 过滤: