我有一个python代码来将字符串数学表达式转换为二叉树并对树的节点进行排序,这样左边的孩子总是比右边的孩子小。我想按以下顺序打印二叉树。
例如,考虑数学表达式((2*75)/4)。buildParseTree()将字符串表达式转换为树并printNodeInLevels()重新排列节点,以便在每个级别上左子节点小于右子节点。操作
+
/\
4 *
/\
2 75
我想按如下方式打印它。我该怎么办?因为数学表达式的长度一直在变化,例如(24*2),((5-1)*(2/3)),(20-(5-4))等
Node("+") #root
.addkid(Node("*") #right child at level 1
.addkid(Node("75")) #right child at level 2
.addkid(Node("2")) #left child at level 2
)
.addkid(Node("4")) #left child at level 1
我已经研究出了按顺序遍历模式按级别打印节点的方法。如果我按如下方式调用该方法,它将打印以下内容:
pt = buildParseTree("( ( 2 * 74 ) / 4 )")
printNodesInLevels(pt)
输出:
/
4 *
2 74
首先,您应该阅读python的PEP8代码约定,因为它说函数、属性和变量应该在snake_case中。
您以迭代方式打印,因此这意味着您无法以等腰三角形打印,因为您无法知道基部(树的最低部分)的大小,以迭代方式,您应该将其打印为具有90度角的三角形。
或者你可以把所有的信息收集到一个列表或一个字符串和格式中,然后打印出来。想想头部,然后是中间有线的孩子。
一个简单而粗糙的:
from collections import deque
def print_tree(root):
res = []
q = deque([root])
while q:
row = []
for _ in range(len(q)):
node = q.popleft()
if not node:
row.append("#")
continue
row.append(node.val)
q.append(node.left)
q.append(node.right)
res.append(row)
rows = len(res)
base = 2**(rows)
for r in range(rows):
for v in res[r]:
print("." * (base), end = "")
print(v, end = "")
print("." * (base - 1), end = "")
print("|")
base //= 2
print_tree(root)
这是我创建的一个函数,用于打印任何二叉树结构。
它非常通用,只需要一个起始节点(根)和一个函数(或lambda)来获取标签和左/右子节点:
您通常会在Node类上这样使用它:
printBTree(rootNode,lambda n: (n.operand, n.left, n.right) )
# assuming the Node class has a string property named operand
# and left,right properties that return a Node or None
二次方程(-b/-sqrt(b**2-4*A*c))/(2*A)可以这样打印:
# /
# ___/ \__
# +/- *
# / \ / \
# - sqrt 2 a
# \ \
# b -
# __/ \_
# ** *
# / \ / \
# b 2 4 *
# / \
# a c
以下是printBTree函数:
import functools as fn
def printBTree(node, nodeInfo=None, inverted=False, isTop=True):
# node value string and sub nodes
stringValue, leftNode, rightNode = nodeInfo(node)
stringValueWidth = len(stringValue)
# recurse to sub nodes to obtain line blocks on left and right
leftTextBlock = [] if not leftNode else printBTree(leftNode,nodeInfo,inverted,False)
rightTextBlock = [] if not rightNode else printBTree(rightNode,nodeInfo,inverted,False)
# count common and maximum number of sub node lines
commonLines = min(len(leftTextBlock),len(rightTextBlock))
subLevelLines = max(len(rightTextBlock),len(leftTextBlock))
# extend lines on shallower side to get same number of lines on both sides
leftSubLines = leftTextBlock + [""] * (subLevelLines - len(leftTextBlock))
rightSubLines = rightTextBlock + [""] * (subLevelLines - len(rightTextBlock))
# compute location of value or link bar for all left and right sub nodes
# * left node's value ends at line's width
# * right node's value starts after initial spaces
leftLineWidths = [ len(line) for line in leftSubLines ]
rightLineIndents = [ len(line)-len(line.lstrip(" ")) for line in rightSubLines ]
# top line value locations, will be used to determine position of current node & link bars
firstLeftWidth = (leftLineWidths + [0])[0]
firstRightIndent = (rightLineIndents + [0])[0]
# width of sub node link under node value (i.e. with slashes if any)
# aims to center link bars under the value if value is wide enough
#
# ValueLine: v vv vvvvvv vvvvv
# LinkLine: / \ / \ / \ / \
#
linkSpacing = min(stringValueWidth, 2 - stringValueWidth % 2)
leftLinkBar = 1 if leftNode else 0
rightLinkBar = 1 if rightNode else 0
minLinkWidth = leftLinkBar + linkSpacing + rightLinkBar
valueOffset = (stringValueWidth - linkSpacing) // 2
# find optimal position for right side top node
# * must allow room for link bars above and between left and right top nodes
# * must not overlap lower level nodes on any given line (allow gap of minSpacing)
# * can be offset to the left if lower subNodes of right node
# have no overlap with subNodes of left node
minSpacing = 2
rightNodePosition = fn.reduce(lambda r,i: max(r,i[0] + minSpacing + firstRightIndent - i[1]), \
zip(leftLineWidths,rightLineIndents[0:commonLines]), \
firstLeftWidth + minLinkWidth)
# extend basic link bars (slashes) with underlines to reach left and right
# top nodes.
#
# vvvvv
# __/ \__
# L R
#
linkExtraWidth = max(0, rightNodePosition - firstLeftWidth - minLinkWidth )
rightLinkExtra = linkExtraWidth // 2
leftLinkExtra = linkExtraWidth - rightLinkExtra
# build value line taking into account left indent and link bar extension (on left side)
valueIndent = max(0, firstLeftWidth + leftLinkExtra + leftLinkBar - valueOffset)
valueLine = " " * max(0,valueIndent) + stringValue
slash = "\\" if inverted else "/"
backslash = "/" if inverted else "\\"
uLine = "¯" if inverted else "_"
# build left side of link line
leftLink = "" if not leftNode else ( " " * firstLeftWidth + uLine * leftLinkExtra + slash)
# build right side of link line (includes blank spaces under top node value)
rightLinkOffset = linkSpacing + valueOffset * (1 - leftLinkBar)
rightLink = "" if not rightNode else ( " " * rightLinkOffset + backslash + uLine * rightLinkExtra )
# full link line (will be empty if there are no sub nodes)
linkLine = leftLink + rightLink
# will need to offset left side lines if right side sub nodes extend beyond left margin
# can happen if left subtree is shorter (in height) than right side subtree
leftIndentWidth = max(0,firstRightIndent - rightNodePosition)
leftIndent = " " * leftIndentWidth
indentedLeftLines = [ (leftIndent if line else "") + line for line in leftSubLines ]
# compute distance between left and right sublines based on their value position
# can be negative if leading spaces need to be removed from right side
mergeOffsets = [ len(line) for line in indentedLeftLines ]
mergeOffsets = [ leftIndentWidth + rightNodePosition - firstRightIndent - w for w in mergeOffsets ]
mergeOffsets = [ p if rightSubLines[i] else 0 for i,p in enumerate(mergeOffsets) ]
# combine left and right lines using computed offsets
# * indented left sub lines
# * spaces between left and right lines
# * right sub line with extra leading blanks removed.
mergedSubLines = zip(range(len(mergeOffsets)), mergeOffsets, indentedLeftLines)
mergedSubLines = [ (i,p,line + (" " * max(0,p)) ) for i,p,line in mergedSubLines ]
mergedSubLines = [ line + rightSubLines[i][max(0,-p):] for i,p,line in mergedSubLines ]
# Assemble final result combining
# * node value string
# * link line (if any)
# * merged lines from left and right sub trees (if any)
treeLines = [leftIndent + valueLine] + ( [] if not linkLine else [leftIndent + linkLine] ) + mergedSubLines
# invert final result if requested
treeLines = reversed(treeLines) if inverted and isTop else treeLines
# return intermediate tree lines or print final result
if isTop : print("\n".join(treeLines))
else : return treeLines
下面是一个使用简单的TreeNode类的输出示例。
class TreeNode:
def __init__(self,rootValue):
self.value = rootValue
self.left = None
self.right = None
def addValue(self,newValue):
if newValue == self.value: return self
if newValue < self.value:
if self.left : return self.left.addValue(newValue)
self.left = TreeNode(newValue)
return self.left
if self.right : return self.right.addValue(newValue)
self.right = TreeNode(newValue)
return self.right
def printTree(self):
printBTree(self,lambda n:(str(n.value),n.left,n.right))
root = TreeNode(80)
root.addValue(50)
root.addValue(90)
root.addValue(10)
root.addValue(60)
root.addValue(30)
root.addValue(70)
root.addValue(55)
root.addValue(5)
root.addValue(35)
root.addValue(85)
root.printTree()
这将生成以下输出:
# 80
# ___/ \___
# 50 90
# __/ \__ /
# 10 60 85
# / \ / \
# 5 30 55 70
# \
# 35
该函数足够通用,可以处理未存储在对象层次结构中的二叉树结构。下面是一个如何使用它从包含堆树的列表中打印的示例:
def printHeapTree(tree, inverted=False):
def getNode(index):
left = index * 2 + 1
right = index * 2 + 2
left = left if left < len(tree) and tree[left] else None
right = right if right < len(tree) and tree[right] else None
return (str(tree[index]), left, right)
printBTree(0,getNode,inverted)
formula = ["+","4","*",None,None,"2","75"]
printHeapTree(formula)
# +
# / \
# 4 *
# / \
# 2 75
该功能将自动调整较宽标签的缩进:
family = [ "Me","Paul","Rosa","Vincent","Jody","John","Kate"]
printHeapTree(family)
# Me
# ___/ \___
# Paul Rosa
# / \ / \
# Vincent Jody John Kate
它还可以倒置打印树(适用于家谱):
printHeapTree(family,inverted=True)
# Vincent Jody John Kate
# \ / \ /
# Paul Rosa
# ¯¯¯\ /¯¯¯
# Me
本文向大家介绍如何打印二叉树每层的节点?相关面试题,主要包含被问及如何打印二叉树每层的节点?时的应答技巧和注意事项,需要的朋友参考一下 考察点:二叉树 实现代码:
下面是一个二叉查找树,它有一个根节点、一个左节点和一个右节点。代码有效,但我想显示这个二叉查找树,这样我就可以看到图层中的每个节点…这是代码…
我一直在尝试从Node切换到Java,我想知道的一件事是如何以类似于Node显示的格式打印对象,例如二叉树。例如,我的二叉树初始化代码如下: 在节点中,此二叉树将显示如下: 然而在Java,当我做system.out.println(树); 输出->BinaryTree@4554617c 什么是打印我的BinaryTree的正确方法?什么是好方法?有没有一种方法可以用JSON格式打印树?
问题内容: 我想以以下方式打印我的二叉树: 我已经编写了用于插入节点的代码,但是无法编写用于打印树的代码。所以请帮忙。我的代码是: 问题答案: 您正在寻找的是广度优先遍历,它使您可以逐级遍历树。基本上,您使用队列来跟踪需要访问的节点,并在运行时将孩子添加到队列的 后面 (而不是将它们添加到堆栈的 前面 )。首先开始工作。 完成此操作后,您可以找出树具有()的级别,并使用该级别来估计空白。如果要使空
问题内容: 如何在Java中打印二进制树,使输出类似于: 我的节点: 问题答案: 我已经创建了简单的二叉树打印机。你可以根据需要使用和修改它,但是仍然没有对其进行优化。我认为很多事情可以在这里得到改善;) 输出1: 输出2:
我试图打印我的二叉搜索树的每个节点的所有值和深度。我很难想出一种递归计算深度的方法。到目前为止,我有一种仅打印树的每个值的方法。我将不胜感激一些指导,因为我觉得我让它变得比应有的更难。