当前位置: 首页 > 面试题库 >

熊猫groupby:如何获得字符串的并集

翟光赫
2023-03-14
问题内容

我有一个这样的数据框:

   A         B       C
0  1  0.749065    This
1  2  0.301084      is
2  3  0.463468       a
3  4  0.643961  random
4  1  0.866521  string
5  2  0.120737       !

呼唤

In [10]: print df.groupby("A")["B"].sum()

将返回

A
1    1.615586
2    0.421821
3    0.463468
4    0.643961

现在,我想对列“
C”执行“相同”操作。因为该列包含字符串,所以sum()不起作用(尽管您可能认为它将字符串连接在一起)。我真正想看到的是每个组的字符串列表或一组字符串,即

A
1    {This, string}
2    {is, !}
3    {a}
4    {random}

我一直在尝试找到方法来做到这一点。

尽管Series.unique()(http://pandas.pydata.org/pandas-
docs/stable/genic/pandas.Series.unique.html
)无效,但是

df.groupby("A")["B"]

是一个

pandas.core.groupby.SeriesGroupBy object

所以我希望任何Series方法都可以。有任何想法吗?


问题答案:
In [4]: df = read_csv(StringIO(data),sep='\s+')

In [5]: df
Out[5]: 
   A         B       C
0  1  0.749065    This
1  2  0.301084      is
2  3  0.463468       a
3  4  0.643961  random
4  1  0.866521  string
5  2  0.120737       !

In [6]: df.dtypes
Out[6]: 
A      int64
B    float64
C     object
dtype: object

应用自己的函数时,不会自动排除非数字列。这会慢一些,但比应用.sum()groupby

In [8]: df.groupby('A').apply(lambda x: x.sum())
Out[8]: 
   A         B           C
A                         
1  2  1.615586  Thisstring
2  4  0.421821         is!
3  3  0.463468           a
4  4  0.643961      random

sum 默认情况下串联

In [9]: df.groupby('A')['C'].apply(lambda x: x.sum())
Out[9]: 
A
1    Thisstring
2           is!
3             a
4        random
dtype: object

你几乎可以做你想做的

In [11]: df.groupby('A')['C'].apply(lambda x: "{%s}" % ', '.join(x))
Out[11]: 
A
1    {This, string}
2           {is, !}
3               {a}
4          {random}
dtype: object

在整个框架上一次执行一次。关键是要返回一个Series

def f(x):
     return Series(dict(A = x['A'].sum(), 
                        B = x['B'].sum(), 
                        C = "{%s}" % ', '.join(x['C'])))

In [14]: df.groupby('A').apply(f)
Out[14]: 
   A         B               C
A                             
1  2  1.615586  {This, string}
2  4  0.421821         {is, !}
3  3  0.463468             {a}
4  4  0.643961        {random}


 类似资料:
  • 问题内容: 我有一个这样的数据框: Calling 将返回 现在,我想对列“ C”执行“相同”操作。因为该列包含字符串,所以sum()不起作用(尽管您可能认为它将字符串连接在一起)。我真正想看到的是每个组的字符串列表或一组字符串,即 我一直在尝试找到方法来做到这一点。 尽管Series.unique()(http://pandas.pydata.org/pandas-docs/stable/gen

  • 我有一个数据帧,我想按Col1 Col2 Col3分组,得到值列的0频率:df= 我如何应用groupby来实现 非常感谢。

  • 问题内容: 我想替换列中的子字符串 到。 需求输出 我尝试,但它返回。 问题答案: 使用与更换和:

  • 问题内容: 我正在尝试使用具有相似列值的行来估算值。 例如,我有这个数据框 我想使用相似的列[‘one’]和[‘two’]的键,并且如果列[‘three’]并非完全是nan,则从具有相似的键的行中插值[ ‘3’] 这是我的愿望结果 您会看到键1和3不包含任何值,因为现有值不存在。 我试过使用groupby fillna() 这给了我一个错误。 我尝试了正向填充,这给了我一个相当奇怪的结果,那就是它

  • 问题内容: 如何获得系列中最常出现的物品? 考虑系列 返回值应该是 问题答案: 您可以使用并提取第一个值: 这不一定是低效率的。与往常一样,对您的数据进行测试以查看适合的数据。

  • 问题内容: 我经常使用pandas groupby生成堆积表。但是然后我经常想将生成的嵌套关系输出到json。有什么方法可以从生成的堆叠表中提取嵌套的json文件吗? 假设我有一个df,例如: 我可以: 美丽!当然,我真正想做的是通过命令沿着grouped.to_json嵌套嵌套的json。但是该功能不可用。任何解决方法? 所以,我真正想要的是这样的: 唐 问题答案: 我认为熊猫没有内置任何东西可