我在csv文件中有这样的数据
Symbol Action Year
AAPL Buy 2001
AAPL Buy 2001
BAC Sell 2002
BAC Sell 2002
我可以像这样阅读和分组
df.groupby(['Symbol','Year']).count()
我懂了
Action
Symbol Year
AAPL 2001 2
BAC 2002 2
我希望这个(顺序无所谓)
Action
Symbol Year
AAPL 2001 2
AAPL 2002 0
BAC 2001 0
BAC 2002 2
我想知道是否有可能算零次
你可以用pivot_table
与unstack
:
print df.pivot_table(index='Symbol',
columns='Year',
values='Action',
fill_value=0,
aggfunc='count').unstack()
Year Symbol
2001 AAPL 2
BAC 0
2002 AAPL 0
BAC 2
dtype: int64
如果您需要DataFrame
使用输出to_frame
:
print df.pivot_table(index='Symbol',
columns='Year',
values='Action',
fill_value=0,
aggfunc='count').unstack()
.to_frame()
.rename(columns={0:'Action'})
Action
Year Symbol
2001 AAPL 2
BAC 0
2002 AAPL 0
BAC 2
问题内容: 我经常使用pandas groupby生成堆积表。但是然后我经常想将生成的嵌套关系输出到json。有什么方法可以从生成的堆叠表中提取嵌套的json文件吗? 假设我有一个df,例如: 我可以: 美丽!当然,我真正想做的是通过命令沿着grouped.to_json嵌套嵌套的json。但是该功能不可用。任何解决方法? 所以,我真正想要的是这样的: 唐 问题答案: 我认为熊猫没有内置任何东西可
问题内容: 我有一个包含以下信息的数据框: 我想根据索引插入数据帧中的值, 但仅在每个文件组中 。 插值,我通常会做 和我一起做 我希望插入的数据帧看起来像这样: NaN仍然存在于t = 6的位置,因为它们是file2组中的第一项。 我怀疑我需要使用“应用”,但是还无法确切地知道如何… 任何帮助,将不胜感激。 问题答案:
我必须根据以下col1、col2和loc的数据进行分组,并计算col3中的项数。此外,还应考虑开始和结束日期,即日期应在2021 1月1日至2021 1月31日之间。最终结果应显示在col4中。 数据 预期输出
问题内容: 我有以下熊猫数据框: 我想计算的是每人参加和未参加的活动数量,以及每人的总积分。所以我做一个groupby: 这会给我类似的东西: 但我想要类似的东西: 我尝试使用pd.MultiIndex尝试填充丢失的零计数,但无济于事。我已经阅读了其他类似的问题,但是在使用MultiIndex处理连续点列时遇到了麻烦。任何想法如何做到这一点? 问题答案: 您可以使用+做到这一点。为了您与精确的输出
问题内容: 我正在尝试使用具有相似列值的行来估算值。 例如,我有这个数据框 我想使用相似的列[‘one’]和[‘two’]的键,并且如果列[‘three’]并非完全是nan,则从具有相似的键的行中插值[ ‘3’] 这是我的愿望结果 您会看到键1和3不包含任何值,因为现有值不存在。 我试过使用groupby fillna() 这给了我一个错误。 我尝试了正向填充,这给了我一个相当奇怪的结果,那就是它
问题内容: 我有一个看起来像这样的DataFrame: 我想将其转换为对属于某些bin的视图进行计数,如下所示: 我试过了: 但它仅提供汇总计数,而不提供用户计数。如何获得用户的垃圾箱计数? 总计计数(使用我的真实数据)如下所示: 问题答案: 您可以按垃圾箱 和 用户名分组,计算分组大小,然后使用: