当前位置: 首页 > 面试题库 >

熊猫DataFrame concat与追加

淳于慎之
2023-03-14
问题内容

我有一个4个熊猫数据框的列表,其中包含我想合并为一个数据框的一天的报价数据。我无法理解concat在时间戳上的行为。请参阅以下详细信息:

data

[<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 35228 entries, 2013-03-28 00:00:07.089000+02:00 to 2013-03-28 18:59:20.357000+02:00
Data columns:
Price       4040  non-null values
Volume      4040  non-null values
BidQty      35228  non-null values
BidPrice    35228  non-null values
AskPrice    35228  non-null values
AskQty      35228  non-null values
dtypes: float64(6),
<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 33088 entries, 2013-04-01 00:03:17.047000+02:00 to 2013-04-01 18:59:58.175000+02:00
Data columns:
Price       3969  non-null values
Volume      3969  non-null values
BidQty      33088  non-null values
BidPrice    33088  non-null values
AskPrice    33088  non-null values
AskQty      33088  non-null values
dtypes: float64(6),
<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 50740 entries, 2013-04-02 00:03:27.470000+02:00 to 2013-04-02 18:59:58.172000+02:00
Data columns:
Price       7326  non-null values
Volume      7326  non-null values
BidQty      50740  non-null values
BidPrice    50740  non-null values
AskPrice    50740  non-null values
AskQty      50740  non-null values
dtypes: float64(6),
<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 60799 entries, 2013-04-03 00:03:06.994000+02:00 to 2013-04-03 18:59:58.180000+02:00
Data columns:
Price       8258  non-null values
Volume      8258  non-null values
BidQty      60799  non-null values
BidPrice    60799  non-null values
AskPrice    60799  non-null values
AskQty      60799  non-null values
dtypes: float64(6)]

使用append我得到:

pd.DataFrame().append(data)

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 179855 entries, 2013-03-28 00:00:07.089000+02:00 to 2013-04-03 18:59:58.180000+02:00
Data columns:
AskPrice    179855  non-null values
AskQty      179855  non-null values
BidPrice    179855  non-null values
BidQty      179855  non-null values
Price       23593  non-null values
Volume      23593  non-null values
dtypes: float64(6)

使用concat我得到:

pd.concat(data)

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 179855 entries, 2013-03-27 22:00:07.089000+02:00 to 2013-04-03 16:59:58.180000+02:00
Data columns:
Price       23593  non-null values
Volume      23593  non-null values
BidQty      179855  non-null values
BidPrice    179855  non-null values
AskPrice    179855  non-null values
AskQty      179855  non-null values
dtypes: float64(6)

注意使用时索引如何变化concat。为什么会发生这种情况,我将如何使用concat该方法来重现使用所获得的结果append?(因为concat看上去快得多;每个循环24.6
ms,而每个循环3.02 s)


问题答案:

因此,您正在执行的操作是append和concat 几乎
等效。区别在于空的DataFrame。由于某些原因,这会导致严重的减速,不确定确切的原因,必须要考虑一下。以下是对您所做工作的基本介绍。

我几乎总是使用concat(尽管在这种情况下,它们是等效的,除了空白框);如果您不使用空框,则它们的速度相同。

In [17]: df1 = pd.DataFrame(dict(A = range(10000)),index=pd.date_range('20130101',periods=10000,freq='s'))

In [18]: df1
Out[18]: 
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 10000 entries, 2013-01-01 00:00:00 to 2013-01-01 02:46:39
Freq: S
Data columns (total 1 columns):
A    10000  non-null values
dtypes: int64(1)

In [19]: df4 = pd.DataFrame()

The concat

In [20]: %timeit pd.concat([df1,df2,df3])
1000 loops, best of 3: 270 us per loop

This is equavalent of your append

In [21]: %timeit pd.concat([df4,df1,df2,df3])
10 loops, best of

 3: 56.8 ms per loop


 类似资料:
  • 问题内容: 这可能很容易,但是我有以下数据: 在数据框1中: 在数据框2中: 我想要一个具有以下形式的数据框: 我尝试使用该方法,但是得到了交叉连接(即笛卡尔积)。 什么是正确的方法? 问题答案: 通常看来,您只是在寻找联接:

  • 问题内容: 我有一个看起来像这样的DataFrame: 我想将其转换为对属于某些bin的视图进行计数,如下所示: 我试过了: 但它仅提供汇总计数,而不提供用户计数。如何获得用户的垃圾箱计数? 总计计数(使用我的真实数据)如下所示: 问题答案: 您可以按垃圾箱 和 用户名分组,计算分组大小,然后使用:

  • 我正在读一个带有如下浮点数的CSV: 并导入到数据框中,然后将此数据框写入新位置 现在,此

  • 问题内容: Python 3.4和Pandas 0.15.0 df是一个数据框,而col1是一列。使用下面的代码,我正在检查是否存在值10,并将此类值替换为1000。 这是另一个例子。这次,我将基于索引更改col2中的值。 这两种都会产生以下警告: 最后, 这会产生类似的警告,并带有以下建议: 我不确定我是否理解警告中指出的讨论。编写这三行代码的更好方法是什么? 请注意,该操作有效。 问题答案:

  • 问题内容: 我想将 大于任意数(在这种情况下为100)的值替换为(因为如此大的值表示实验失败)。以前,我使用它来替换不需要的值: 但是,出现以下错误: 从这个StackExchange问​​题来看,有时似乎可以忽略此警告,但是我不能很好地跟踪讨论,无法确定这是否适用于我的情况。警告基本上是让我知道我将覆盖我的某些值吗? 编辑:据我所知,一切都按其应有的方式进行。作为后续措施,我的替换值方法是否非标

  • 我有一个数据帧,如: 所以我想通过两个“for循环”添加一些列,如: 新的类似数据帧的图片: 我的代码不起作用: 如何编写代码来获得像第二张图片这样的数据帧?