当前位置: 首页 > 文档资料 > Hadoop 中文文档 >

相关软件介绍/Hive/SerDe概述

优质
小牛编辑
128浏览
2023-12-01

一、背景

1、当进程在进行远程通信时,彼此可以发送各种类型的数据,无论是什么类型的数据都会以二进制序列的形式在网络上传送。发送方需要把对象转化为字节序列才可在网络上传输,称为对象序列化;接收方则需要把字节序列恢复为对象,称为对象的反序列化。

2、Hive的反序列化是对key/value反序列化成hive table的每个列的值。

3、Hive可以方便的将数据加载到表中而不需要对数据进行转换,这样在处理海量数据时可以节省大量的时间。

二、技术细节

1、SerDe是Serialize/Deserilize的简称,目的是用于序列化和反序列化。

2、用户在建表时可以用自定义的SerDe或使用Hive自带的SerDe,SerDe能为表指定列,且对列指定相应的数据。

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
  [(col_name data_type [COMMENT col_comment], ...)]
  [COMMENT table_comment]
  [PARTITIONED BY (col_name data_type
[COMMENT col_comment], ...)]
  [CLUSTERED BY (col_name, col_name, ...)
  [SORTED BY (col_name [ASC|DESC], ...)]
  INTO num_buckets BUCKETS]
  [ROW FORMAT row_format]
  [STORED AS file_format]
  [LOCATION hdfs_path]

创建指定SerDe表时,使用row format row_format参数,例如:

a、添加jar包。在hive客户端输入:hive>add jar  /run/serde_test.jar;
或者在linux shell端执行命令:${HIVE_HOME}/bin/hive  -auxpath  /run/serde_test.jar 
b、建表:create table serde_table row format serde  'hive.connect.TestDeserializer';

3、编写序列化类TestDeserializer。实现Deserializer接口的三个函数:

a)初始化:initialize(Configuration conf, Properties tb1)。

b)反序列化Writable类型返回Object:deserialize(Writable blob)。

c)获取deserialize(Writable blob)返回值Object的inspector:getObjectInspector()。

public interface Deserializer {
  /**
* Initialize the HiveDeserializer.
* @param conf System properties
* @param tbl  table properties
* @throws SerDeException
*/
  public void initialize(Configuration conf, Properties tbl) throws  SerDeException;
  /**
* Deserialize an object out of a Writable blob.
* In most cases, the return value of this function will be  constant since the function
* will reuse the returned object.
* If the client wants to keep a copy of the object, the client  needs to clone the
* returned value by calling  ObjectInspectorUtils.getStandardObject().
* @param blob The Writable object containing a serialized object
* @return A Java object representing the contents in the blob.
*/
  public Object deserialize(Writable blob) throws SerDeException;
  /**
* Get the object inspector that can be used to navigate through  the internal
* structure of the Object returned from deserialize(...).
*/
  public ObjectInspector getObjectInspector() throws SerDeException;
}

实现一行数据划分成hive表的time,userid,host,path四个字段的反序列化类。例如:

package hive.connect;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hive.serde2.Deserializer;
import org.apache.hadoop.hive.serde2.SerDeException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import  org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import  org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory.ObjectInspectorOptions;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
public class TestDeserializer implements Deserializer {
private static List<String> FieldNames = new ArrayList<String>();
private static List<ObjectInspector> FieldNamesObjectInspectors =  new ArrayList<ObjectInspector>();
static {
FieldNames.add("time");
FieldNamesObjectInspectors.add(ObjectInspectorFactory
.getReflectionObjectInspector(Long.class,
ObjectInspectorOptions.JAVA));
FieldNames.add("userid");
FieldNamesObjectInspectors.add(ObjectInspectorFactory
.getReflectionObjectInspector(Integer.class,
ObjectInspectorOptions.JAVA));
FieldNames.add("host");
FieldNamesObjectInspectors.add(ObjectInspectorFactory
.getReflectionObjectInspector(String.class,
ObjectInspectorOptions.JAVA));
FieldNames.add("path");
FieldNamesObjectInspectors.add(ObjectInspectorFactory
.getReflectionObjectInspector(String.class,
ObjectInspectorOptions.JAVA));
}
@Override
public Object deserialize(Writable blob) {
try {
if (blob instanceof Text) {
String line = ((Text) blob).toString();
if (line == null)
return null;
String[] field = line.split("t");
if (field.length != 3) {
return null;
}
List<Object> result = new ArrayList<Object>();
URL url = new URL(field[2]);
Long time = Long.valueOf(field[0]);
Integer userid = Integer.valueOf(field[1]);
result.add(time);
result.add(userid);
result.add(url.getHost());
result.add(url.getPath());
return result;
}
} catch (MalformedURLException e) {
e.printStackTrace();
}
return null;
}
@Override
public ObjectInspector getObjectInspector() throws SerDeException {
return ObjectInspectorFactory.getStandardStructObjectInspector(
FieldNames, FieldNamesObjectInspectors);
}
@Override
public void initialize(Configuration arg0, Properties arg1)
throws SerDeException {
}
}

测试HDFS上hive表数据,如下为一条测试数据:

1234567891012 123456 http://wiki.apache.org/hadoop/Hive/LanguageManual/UDF

hive> add jar /run/jar/merg_hua.jar;    
Added /run/jar/merg_hua.jar to class path
hive> create table serde_table row format serde 'hive.connect.TestDeserializer';
Found class for hive.connect.TestDeserializer
OK
Time taken: 0.028 seconds
hive> describe serde_table;
OK
time    bigint  from deserializer
userid  intfrom deserializer
host    string  from deserializer
path    string  from deserializer
Time taken: 0.042 seconds 
hive> select * from serde_table;
OK
1234567891012   123456  wiki.apache.org /hadoop/Hive/LanguageManual/UDF
Time taken: 0.039 seconds
三、总结

1、创建Hive表使用序列化时,需要自写一个实现Deserializer的类,并且选用create命令的row format参数。

2、在处理海量数据的时候,如果数据的格式与表结构吻合,可以用到Hive的反序列化而不需要对数据进行转换,可以节省大量的时间。