Hadoop概述/Hadoop介绍
一、背景
1、起源
MapReduce编程模型的思想来源于函数式编程语言Lisp,由Google公司于2004年提出并首先应用于大型集群。同时,Google也发表了GFS、BigTable等底层系统以应用MapReduce模型。在2007年,Google’s MapReduce Programming Model-Revisted论文发表,进一步详细介绍了Google MapReduce模型以及Sazwall并行处理海量数据分析语言。Google公司以MapReduce作为基石,逐步发展成为全球互联网企业的领头羊。
2、项目起源和发展
Hadoop作为Apache基金会资助的开源项目,由Doug Cutting带领的团队进行开发,基于Lucene和Nutch等开源项目,实现了Google的GFS和Hadoop能够稳定运行在20个节点的集群;2006年1月,Doug Cutting加入雅虎公司,同年2月Apache Hadoop项目正式支持HDFS和MapReduce的独立开发。同时,新兴公司Cloudera为Hadoop提供了商业支持,帮助企业实现标准化安装,并志愿贡献社区。Hadoop的最新版本是0.21.0,说明其还在不断完善发展之中。
二、Hadoop基础原理
1、定义
Hadoop原来是Apache Lucene下的一个子项目,它最初是从Nutch项目中分离出来的专门负责分布式存储以及分布式运算的项目。简单地说来,Hadoop是一个可以更容易开发和运行处理大规模数据的软件平台。
2、组成
Hadoop由分布式存储HDFS和分布式计算MapReduce两部分组成。HDFS是一个master/slave的结构,就通常的部署来说,在master上只运行一个Namenode,而在每一个slave上运行一个Datanode。MapReduce是Google的一项重要技术,它是一个编程模型,用以进行大数据量的计算。MapReduce的名字源于这个模型中的两项核心操作:Map和Reduce。Map是把一组数据一对一的映射为另外的一组数据,Reduce是对一组数据进行归约,映射和归约的规则都由一个函数指定。
三、国内外应用
1、国外应用
2008年2月,雅虎宣布搭建出世界上最大的基于Hadoop的集群系统—Yahoo! Search Webmap,另外还被广泛应用到雅虎的日志分析、广告计算、科研实验中;Amazon的搜索门户A9.com中的商品搜索的索引生成就是基于Hadoop完成的;互联网电台和音乐社区网站Last.fm使用Hadoop集群运行日志分析、A/B测试评价、AdHoc处理和图表生成等日常作业;着名SNS网站Facebook用Hadoop构建了整个网站的数据仓库,它目前有320多台机器进行网站的日志分析和数据挖掘。 UC Berkeley等着名高校也对Hadoop进行应用和研究,以提高其整体性能,包括Matei Zaharia等人改进了Hadoop的推测式执行技术并发表了Improving MapReduce Performance in Heterogeneous Environment;Tyson Condie等人改进了MapReduce体系,允许数据在操作之间用管道传送,开发了Hadoop Online Prototype(HOP)系统,并发表了MapReduce Online。
2、国内应用
2008年之后,国内应用和研究Hadoop的企业也越来越多,包括淘宝、百度、腾讯、网易、金山等。淘宝是国内最先使用Hadoop的公司之一;百度在Hadoop上进行广泛应用并对它进行改进和调整,同时赞助了HyperTable的开发。总之,互联网企业是Hadoop在国内的主要使用力量。同样的,很多科研院所也投入到Hadoop的应用和研究中,包括中科院、清华大学、浙江大学和华中科技大学等。
四、此文档说明
1、来源
该文档在编写的过程中添加了hadoop自带的中文说明文档,同时也借鉴了网上一些朋友编写资料。主要目的就是将这里信息汇总,方便查阅和推广。
2、扩展
文档发出之后,同时也希望各位朋友能够把自己的文档发表出来,供大家参考借鉴。
3、环境
该文档中涉及的例子我采用的都是Linux操作系统、Apache发布的Hadoop版本0.20.2、JDK使用的是1.6,Hive使用的是0.5、HBase使用的是0.20.5