TLS (安全传输层)
稳定性: 2 - 稳定的
tls
模块是对安全传输层(TLS)及安全套接层(SSL)协议的实现,建立在OpenSSL的基础上。 按如下方式引用此模块:
const tls = require('tls');
TLS/SSL 概念
TLS/SSL 是 public/private key infrastructure (PKI),大部分情况下,每个服务器和客户端都应该有一个私钥。
私钥能有多种生成方式,下面举一个例子。 用OpenSSL的命令行来生成一个2048位的RSA私钥:
openssl genrsa -out ryans-key.pem 2048
通过TLS/SSL,所有的服务器(和一些客户端)必须要一个证书。 证书是相似于私钥的公钥,它由CA或者私钥拥有者数字签名,特别地,私钥拥有者所签名的被称为自签名。 获取证书的第一步是生成一个证书申请文件(CSR)
用OpenSSL能生成一个私钥的CSR文件:
openssl req -new -sha256 -key ryans-key.pem -out ryans-csr.pem
CSR文件被生成以后,它既能被CA签名也能被用户自签名。 用OpenSSL生成一个自签名证书的命令如下:
openssl x509 -req -in ryans-csr.pem -signkey ryans-key.pem -out ryans-cert.pem
证书被生成以后,它又能用来生成一个 .pfx
或者 .p12
文件:
openssl pkcs12 -export -in ryans-cert.pem -inkey ryans-key.pem \
-certfile ca-cert.pem -out ryans.pfx
命令行参数:
in
: 被签名的证书inkey
: 有关的私钥certfile
: 签入文件的证书串,比如:cat ca1-cert.pem ca2-cert.pem > ca-cert.pem
Perfect Forward Secrecy
The term "Forward Secrecy" or "Perfect Forward Secrecy" describes a feature of key-agreement (i.e., key-exchange) methods. That is, the server and client keys are used to negotiate new temporary keys that are used specifically and only for the current communication session. Practically, this means that even if the server's private key is compromised, communication can only be decrypted by eavesdroppers if the attacker manages to obtain the key-pair specifically generated for the session.
Perfect Forward Secrecy is achieved by randomly generating a key pair for key-agreement on every TLS/SSL handshake (in contrast to using the same key for all sessions). Methods implementing this technique are called "ephemeral".
Currently two methods are commonly used to achieve Perfect Forward Secrecy (note the character "E" appended to the traditional abbreviations):
- DHE - An ephemeral version of the Diffie Hellman key-agreement protocol.
- ECDHE - An ephemeral version of the Elliptic Curve Diffie Hellman key-agreement protocol.
Ephemeral methods may have some performance drawbacks, because key generation is expensive.
To use Perfect Forward Secrecy using DHE
with the tls
module, it is required to generate Diffie-Hellman parameters and specify them with the dhparam
option to tls.createSecureContext()
. The following illustrates the use of the OpenSSL command-line interface to generate such parameters:
openssl dhparam -outform PEM -out dhparam.pem 2048
If using Perfect Forward Secrecy using ECDHE
, Diffie-Hellman parameters are not required and a default ECDHE curve will be used. The ecdhCurve
property can be used when creating a TLS Server to specify the name of an alternative curve to use, see tls.createServer()
for more info.
ALPN, NPN and SNI
ALPN (Application-Layer Protocol Negotiation Extension), NPN (Next Protocol Negotiation) and, SNI (Server Name Indication) are TLS handshake extensions:
- ALPN/NPN - Allows the use of one TLS server for multiple protocols (HTTP, SPDY, HTTP/2)
- SNI - Allows the use of one TLS server for multiple hostnames with different SSL certificates.
Note: Use of ALPN is recommended over NPN. The NPN extension has never been formally defined or documented and generally not recommended for use.
Client-initiated renegotiation attack mitigation
The TLS protocol allows clients to renegotiate certain aspects of the TLS session. Unfortunately, session renegotiation requires a disproportionate amount of server-side resources, making it a potential vector for denial-of-service attacks.
To mitigate the risk, renegotiation is limited to three times every ten minutes. An 'error'
event is emitted on the tls.TLSSocket
instance when this threshold is exceeded. The limits are configurable:
tls.CLIENT_RENEG_LIMIT
<number> Specifies the number of renegotiation requests. Defaults to3
.tls.CLIENT_RENEG_WINDOW
<number> Specifies the time renegotiation window in seconds. Defaults to600
(10 minutes).
Note: The default renegotiation limits should not be modified without a full understanding of the implications and risks.
To test the renegotiation limits on a server, connect to it using the OpenSSL command-line client (openssl s_client -connect address:port
) then input R<CR>
(i.e., the letter R
followed by a carriage return) multiple times.
Modifying the Default TLS Cipher suite
Node.js is built with a default suite of enabled and disabled TLS ciphers. Currently, the default cipher suite is:
ECDHE-RSA-AES128-GCM-SHA256:
ECDHE-ECDSA-AES128-GCM-SHA256:
ECDHE-RSA-AES256-GCM-SHA384:
ECDHE-ECDSA-AES256-GCM-SHA384:
DHE-RSA-AES128-GCM-SHA256:
ECDHE-RSA-AES128-SHA256:
DHE-RSA-AES128-SHA256:
ECDHE-RSA-AES256-SHA384:
DHE-RSA-AES256-SHA384:
ECDHE-RSA-AES256-SHA256:
DHE-RSA-AES256-SHA256:
HIGH:
!aNULL:
!eNULL:
!EXPORT:
!DES:
!RC4:
!MD5:
!PSK:
!SRP:
!CAMELLIA
This default can be replaced entirely using the --tls-cipher-list
command line switch. For instance, the following makes ECDHE-RSA-AES128-GCM-SHA256:!RC4
the default TLS cipher suite:
node --tls-cipher-list="ECDHE-RSA-AES128-GCM-SHA256:!RC4"
The default can also be replaced on a per client or server basis using the ciphers
option from tls.createSecureContext()
, which is also available in tls.createServer()
, tls.connect()
, and when creating new tls.TLSSocket
s.
Consult OpenSSL cipher list format documentation for details on the format.
Note: The default cipher suite included within Node.js has been carefully selected to reflect current security best practices and risk mitigation. Changing the default cipher suite can have a significant impact on the security of an application. The --tls-cipher-list
switch and ciphers
option should by used only if absolutely necessary.
The default cipher suite prefers GCM ciphers for Chrome's 'modern cryptography' setting and also prefers ECDHE and DHE ciphers for Perfect Forward Secrecy, while offering some backward compatibility.
128 bit AES is preferred over 192 and 256 bit AES in light of specific attacks affecting larger AES key sizes.
Old clients that rely on insecure and deprecated RC4 or DES-based ciphers (like Internet Explorer 6) cannot complete the handshaking process with the default configuration. If these clients must be supported, the TLS recommendations may offer a compatible cipher suite. For more details on the format, see the OpenSSL cipher list format documentation.
Class: tls.Server
新增于: v0.3.2
The tls.Server
class is a subclass of net.Server
that accepts encrypted connections using TLS or SSL.
Event: 'newSession'
新增于: v0.9.2
The 'newSession'
event is emitted upon creation of a new TLS session. This may be used to store sessions in external storage. The listener callback is passed three arguments when called:
sessionId
- The TLS session identifiersessionData
- The TLS session datacallback
<Function> A callback function taking no arguments that must be invoked in order for data to be sent or received over the secure connection.
Note: Listening for this event will have an effect only on connections established after the addition of the event listener.
Event: 'OCSPRequest'
新增于: v0.11.13
The 'OCSPRequest'
event is emitted when the client sends a certificate status request. The listener callback is passed three arguments when called:
certificate
<Buffer> The server certificateissuer
<Buffer> The issuer's certificatecallback
<Function> A callback function that must be invoked to provide the results of the OCSP request.
The server's current certificate can be parsed to obtain the OCSP URL and certificate ID; after obtaining an OCSP response, callback(null, resp)
is then invoked, where resp
is a Buffer
instance containing the OCSP response. Both certificate
and issuer
are Buffer
DER-representations of the primary and issuer's certificates. These can be used to obtain the OCSP certificate ID and OCSP endpoint URL.
Alternatively, callback(null, null)
may be called, indicating that there was no OCSP response.
Calling callback(err)
will result in a socket.destroy(err)
call.
The typical flow of an OCSP Request is as follows:
- Client connects to the server and sends an
'OCSPRequest'
(via the status info extension in ClientHello). - Server receives the request and emits the
'OCSPRequest'
event, calling the listener if registered. - Server extracts the OCSP URL from either the
certificate
orissuer
and performs an OCSP request to the CA. - Server receives
OCSPResponse
from the CA and sends it back to the client via thecallback
argument - Client validates the response and either destroys the socket or performs a handshake.
Note: The issuer
can be null
if the certificate is either self-signed or the issuer is not in the root certificates list. (An issuer may be provided via the ca
option when establishing the TLS connection.)
Note: Listening for this event will have an effect only on connections established after the addition of the event listener.
Note: An npm module like asn1.js may be used to parse the certificates.
Event: 'resumeSession'
新增于: v0.9.2
The 'resumeSession'
event is emitted when the client requests to resume a previous TLS session. The listener callback is passed two arguments when called:
sessionId
- The TLS/SSL session identifiercallback
<Function> A callback function to be called when the prior session has been recovered.
When called, the event listener may perform a lookup in external storage using the given sessionId
and invoke callback(null, sessionData)
once finished. If the session cannot be resumed (i.e., doesn't exist in storage) the callback may be invoked as callback(null, null)
. Calling callback(err)
will terminate the incoming connection and destroy the socket.
Note: Listening for this event will have an effect only on connections established after the addition of the event listener.
The following illustrates resuming a TLS session:
const tlsSessionStore = {};
server.on('newSession', (id, data, cb) => {
tlsSessionStore[id.toString('hex')] = data;
cb();
});
server.on('resumeSession', (id, cb) => {
cb(null, tlsSessionStore[id.toString('hex')] || null);
});
Event: 'secureConnection'
新增于: v0.3.2
The 'secureConnection'
event is emitted after the handshaking process for a new connection has successfully completed. The listener callback is passed a single argument when called:
tlsSocket
<tls.TLSSocket> The established TLS socket.
The tlsSocket.authorized
property is a boolean
indicating whether the client has been verified by one of the supplied Certificate Authorities for the server. If tlsSocket.authorized
is false
, then socket.authorizationError
is set to describe how authorization failed. Note that depending on the settings of the TLS server, unauthorized connections may still be accepted.
The tlsSocket.npnProtocol
and tlsSocket.alpnProtocol
properties are strings that contain the selected NPN and ALPN protocols, respectively. When both NPN and ALPN extensions are received, ALPN takes precedence over NPN and the next protocol is selected by ALPN.
When ALPN has no selected protocol, tlsSocket.alpnProtocol
returns false
.
The tlsSocket.servername
property is a string containing the server name requested via SNI.
Event: 'tlsClientError'
新增于: v6.0.0
The 'tlsClientError'
event is emitted when an error occurs before a secure connection is established. The listener callback is passed two arguments when called:
exception
<Error> TheError
object describing the errortlsSocket
<tls.TLSSocket> Thetls.TLSSocket
instance from which the error originated.
server.addContext(hostname, context)
新增于: v0.5.3
hostname
<string> A SNI hostname or wildcard (e.g.'*'
)context
<Object> An object containing any of the possible properties from thetls.createSecureContext()
options
arguments (e.g.key
,cert
,ca
, etc).
The server.addContext()
method adds a secure context that will be used if the client request's SNI hostname matches the supplied hostname
(or wildcard).
server.address()
新增于: v0.6.0
Returns the bound address, the address family name, and port of the server as reported by the operating system. See net.Server.address()
for more information.
server.close([callback])
新增于: v0.3.2
callback
<Function> An optional listener callback that will be registered to listen for the server instance's'close'
event.
The server.close()
method stops the server from accepting new connections.
This function operates asynchronously. The 'close'
event will be emitted when the server has no more open connections.
server.connections
新增于: v0.3.2废弃于: v0.9.7 Stability: 0 - Deprecated: Use server.getConnections()
instead.
Returns the current number of concurrent connections on the server.
server.getTicketKeys()
新增于: v3.0.0
Returns a Buffer
instance holding the keys currently used for encryption/decryption of the TLS Session Tickets
server.listen(port[, hostname][, callback])
新增于: v0.3.2
port
<number> The TCP/IP port on which to begin listening for connections. A value of0
(zero) will assign a random port.hostname
<string> The hostname, IPv4, or IPv6 address on which to begin listening for connections. Ifundefined
, the server will accept connections on any IPv6 address (::
) when IPv6 is available, or any IPv4 address (0.0.0.0
) otherwise.callback
<Function> A callback function to be invoked when the server has begun listening on theport
andhostname
.
The server.listen()
methods instructs the server to begin accepting connections on the specified port
and hostname
.
This function operates asynchronously. If the callback
is given, it will be called when the server has started listening.
See net.Server
for more information.
server.setTicketKeys(keys)
新增于: v3.0.0
keys
<Buffer> The keys used for encryption/decryption of the TLS Session Tickets.
Updates the keys for encryption/decryption of the TLS Session Tickets.
Note: The key's Buffer
should be 48 bytes long. See ticketKeys
option in tls.createServer for more information on how it is used.
Note: Changes to the ticket keys are effective only for future server connections. Existing or currently pending server connections will use the previous keys.
Class: tls.TLSSocket
新增于: v0.11.4
The tls.TLSSocket
is a subclass of net.Socket
that performs transparent encryption of written data and all required TLS negotiation.
Instances of tls.TLSSocket
implement the duplex Stream interface.
Note: Methods that return TLS connection metadata (e.g. tls.TLSSocket.getPeerCertificate()
will only return data while the connection is open.
new tls.TLSSocket(socket[, options])
版本历史
版本 | 变更 |
---|---|
v5.0.0 | ALPN options are supported now. |
v0.11.4 | 新增于: v0.11.4 |
socket
<net.Socket> An instance ofnet.Socket
options
<Object>isServer
: The SSL/TLS protocol is asymetrical, TLSSockets must know if they are to behave as a server or a client. Iftrue
the TLS socket will be instantiated as a server. Defaults tofalse
.server
<net.Server> An optionalnet.Server
instance.requestCert
: Whether to authenticate the remote peer by requesting a certificate. Clients always request a server certificate. Servers (isServer
is true) may optionally setrequestCert
to true to request a client certificate.rejectUnauthorized
: Optional, seetls.createServer()
NPNProtocols
: Optional, seetls.createServer()
ALPNProtocols
: Optional, seetls.createServer()
SNICallback
: Optional, seetls.createServer()
session
<Buffer> An optionalBuffer
instance containing a TLS session.requestOCSP
<boolean> Iftrue
, specifies that the OCSP status request extension will be added to the client hello and an'OCSPResponse'
event will be emitted on the socket before establishing a secure communicationsecureContext
: Optional TLS context object created withtls.createSecureContext()
. If asecureContext
is not provided, one will be created by passing the entireoptions
object totls.createSecureContext()
.- ...: Optional
tls.createSecureContext()
options that are used if thesecureContext
option is missing, otherwise they are ignored.
Construct a new tls.TLSSocket
object from an existing TCP socket.
Event: 'OCSPResponse'
新增于: v0.11.13
The 'OCSPResponse'
event is emitted if the requestOCSP
option was set when the tls.TLSSocket
was created and an OCSP response has been received. The listener callback is passed a single argument when called:
response
<Buffer> The server's OCSP response
Typically, the response
is a digitally signed object from the server's CA that contains information about server's certificate revocation status.
Event: 'secureConnect'
新增于: v0.11.4
The 'secureConnect'
event is emitted after the handshaking process for a new connection has successfully completed. The listener callback will be called regardless of whether or not the server's certificate has been authorized. It is the client's responsibility to check the tlsSocket.authorized
property to determine if the server certificate was signed by one of the specified CAs. If tlsSocket.authorized === false
, then the error can be found by examining the tlsSocket.authorizationError
property. If either ALPN or NPN was used, the tlsSocket.alpnProtocol
or tlsSocket.npnProtocol
properties can be checked to determine the negotiated protocol.
tlsSocket.address()
新增于: v0.11.4
Returns the bound address, the address family name, and port of the underlying socket as reported by the operating system. Returns an object with three properties, e.g., { port: 12346, family: 'IPv4', address: '127.0.0.1' }
tlsSocket.authorizationError
新增于: v0.11.4
Returns the reason why the peer's certificate was not been verified. This property is set only when tlsSocket.authorized === false
.
tlsSocket.authorized
新增于: v0.11.4
Returns true
if the peer certificate was signed by one of the CAs specified when creating the tls.TLSSocket
instance, otherwise false
.
tlsSocket.encrypted
新增于: v0.11.4
Always returns true
. This may be used to distinguish TLS sockets from regular net.Socket
instances.
tlsSocket.getCipher()
新增于: v0.11.4
Returns an object representing the cipher name and the SSL/TLS protocol version that first defined the cipher.
For example: { name: 'AES256-SHA', version: 'TLSv1/SSLv3' }
See SSL_CIPHER_get_name()
and SSL_CIPHER_get_version()
in https://www.openssl.org/docs/man1.0.2/ssl/SSL_CIPHER_get_name.html for more information.
tlsSocket.getEphemeralKeyInfo()
新增于: v5.0.0
Returns an object representing the type, name, and size of parameter of an ephemeral key exchange in Perfect Forward Secrecy on a client connection. It returns an empty object when the key exchange is not ephemeral. As this is only supported on a client socket; null
is returned if called on a server socket. The supported types are 'DH'
and 'ECDH'
. The name
property is available only when type is 'ECDH'.
For Example: { type: 'ECDH', name: 'prime256v1', size: 256 }
tlsSocket.getPeerCertificate([detailed])
新增于: v0.11.4
detailed
<boolean> Include the full certificate chain iftrue
, otherwise include just the peer's certificate.
Returns an object representing the peer's certificate. The returned object has some properties corresponding to the fields of the certificate.
If the full certificate chain was requested, each certificate will include a issuerCertificate
property containing an object representing its issuer's certificate.
For example:
{ subject:
{ C: 'UK',
ST: 'Acknack Ltd',
L: 'Rhys Jones',
O: 'node.js',
OU: 'Test TLS Certificate',
CN: 'localhost' },
issuer:
{ C: 'UK',
ST: 'Acknack Ltd',
L: 'Rhys Jones',
O: 'node.js',
OU: 'Test TLS Certificate',
CN: 'localhost' },
issuerCertificate:
{ ... another certificate, possibly with a .issuerCertificate ... },
raw: < RAW DER buffer >,
valid_from: 'Nov 11 09:52:22 2009 GMT',
valid_to: 'Nov 6 09:52:22 2029 GMT',
fingerprint: '2A:7A:C2:DD:E5:F9:CC:53:72:35:99:7A:02:5A:71:38:52:EC:8A:DF',
serialNumber: 'B9B0D332A1AA5635' }
If the peer does not provide a certificate, an empty object will be returned.
tlsSocket.getProtocol()
新增于: v5.7.0
Returns a string containing the negotiated SSL/TLS protocol version of the current connection. The value 'unknown'
will be returned for connected sockets that have not completed the handshaking process. The value null
will be returned for server sockets or disconnected client sockets.
Example responses include:
SSLv3
TLSv1
TLSv1.1
TLSv1.2
unknown
See https://www.openssl.org/docs/man1.0.2/ssl/SSL_get_version.html for more information.
tlsSocket.getSession()
新增于: v0.11.4
Returns the ASN.1 encoded TLS session or undefined
if no session was negotiated. Can be used to speed up handshake establishment when reconnecting to the server.
tlsSocket.getTLSTicket()
新增于: v0.11.4
Returns the TLS session ticket or undefined
if no session was negotiated.
Note: This only works with client TLS sockets. Useful only for debugging, for session reuse provide session
option to tls.connect()
.
tlsSocket.localAddress
新增于: v0.11.4
Returns the string representation of the local IP address.
tlsSocket.localPort
新增于: v0.11.4
Returns the numeric representation of the local port.
tlsSocket.remoteAddress
新增于: v0.11.4
Returns the string representation of the remote IP address. For example, '74.125.127.100'
or '2001:4860:a005::68'
.
tlsSocket.remoteFamily
新增于: v0.11.4
Returns the string representation of the remote IP family. 'IPv4'
or 'IPv6'
.
tlsSocket.remotePort
新增于: v0.11.4
Returns the numeric representation of the remote port. For example, 443
.
tlsSocket.renegotiate(options, callback)
新增于: v0.11.8
options
<Object>rejectUnauthorized
<boolean> If notfalse
, the server certificate is verified against the list of supplied CAs. An'error'
event is emitted if verification fails;err.code
contains the OpenSSL error code. Defaults totrue
.requestCert
callback
<Function> A function that will be called when the renegotiation request has been completed.
The tlsSocket.renegotiate()
method initiates a TLS renegotiation process. Upon completion, the callback
function will be passed a single argument that is either an Error
(if the request failed) or null
.
Note: This method can be used to request a peer's certificate after the secure connection has been established.
Note: When running as the server, the socket will be destroyed with an error after handshakeTimeout
timeout.
tlsSocket.setMaxSendFragment(size)
新增于: v0.11.11
size
<number> The maximum TLS fragment size. Defaults to16384
. The maximum value is16384
.
The tlsSocket.setMaxSendFragment()
method sets the maximum TLS fragment size. Returns true
if setting the limit succeeded; false
otherwise.
Smaller fragment sizes decrease the buffering latency on the client: larger fragments are buffered by the TLS layer until the entire fragment is received and its integrity is verified; large fragments can span multiple roundtrips and their processing can be delayed due to packet loss or reordering. However, smaller fragments add extra TLS framing bytes and CPU overhead, which may decrease overall server throughput.
tls.connect(options[, callback])
版本历史
版本 | 变更 |
---|---|
v8.0.0 | The lookup option is supported now. |
v8.0.0 | The ALPNProtocols and NPNProtocols options can be Uint8Array s now. |
v5.3.0, v4.7.0 | The secureContext option is supported now. |
v5.0.0 | ALPN options are supported now. |
v0.11.3 | 新增于: v0.11.3 |
options
<Object>host
<string> Host the client should connect to, defaults to 'localhost'.port
<number> Port the client should connect to.path
<string> Creates unix socket connection to path. If this option is specified,host
andport
are ignored.socket
<net.Socket> Establish secure connection on a given socket rather than creating a new socket. If this option is specified,path
,host
andport
are ignored. Usually, a socket is already connected when passed totls.connect()
, but it can be connected later. Note that connection/disconnection/destruction ofsocket
is the user's responsibility, callingtls.connect()
will not causenet.connect()
to be called.rejectUnauthorized
<boolean> If notfalse
, the server certificate is verified against the list of supplied CAs. An'error'
event is emitted if verification fails;err.code
contains the OpenSSL error code. Defaults totrue
.NPNProtocols
<string[]> | <Buffer[]> | <Uint8Array[]> | <Buffer> | <Uint8Array> An array of strings,Buffer
s orUint8Array
s, or a singleBuffer
orUint8Array
containing supported NPN protocols.Buffer
s should have the format[len][name][len][name]...
e.g.0x05hello0x05world
, where the first byte is the length of the next protocol name. Passing an array is usually much simpler, e.g.['hello', 'world']
.ALPNProtocols
: <string[]> | <Buffer[]> | <Uint8Array[]> | <Buffer> | <Uint8Array> An array of strings,Buffer
s orUint8Array
s, or a singleBuffer
orUint8Array
containing the supported ALPN protocols.Buffer
s should have the format[len][name][len][name]...
e.g.0x05hello0x05world
, where the first byte is the length of the next protocol name. Passing an array is usually much simpler, e.g.['hello', 'world']
.servername
: <string> Server name for the SNI (Server Name Indication) TLS extension.checkServerIdentity(servername, cert)
<Function> A callback function to be used when checking the server's hostname against the certificate. This should throw an error if verification fails. The method should returnundefined
if theservername
andcert
are verified.session
<Buffer> ABuffer
instance, containing TLS session.minDHSize
<number> Minimum size of the DH parameter in bits to accept a TLS connection. When a server offers a DH parameter with a size less thanminDHSize
, the TLS connection is destroyed and an error is thrown. Defaults to1024
.secureContext
: Optional TLS context object created withtls.createSecureContext()
. If asecureContext
is not provided, one will be created by passing the entireoptions
object totls.createSecureContext()
.lookup
: <Function> Custom lookup function. Defaults todns.lookup()
.- ...: Optional
tls.createSecureContext()
options that are used if thesecureContext
option is missing, otherwise they are ignored.
callback
<Function>
The callback
function, if specified, will be added as a listener for the 'secureConnect'
event.
tls.connect()
returns a tls.TLSSocket
object.
The following implements a simple "echo server" example:
const tls = require('tls');
const fs = require('fs');
const options = {
// Necessary only if using the client certificate authentication
key: fs.readFileSync('client-key.pem'),
cert: fs.readFileSync('client-cert.pem'),
// Necessary only if the server uses the self-signed certificate
ca: [ fs.readFileSync('server-cert.pem') ]
};
const socket = tls.connect(8000, options, () => {
console.log('client connected',
socket.authorized ? 'authorized' : 'unauthorized');
process.stdin.pipe(socket);
process.stdin.resume();
});
socket.setEncoding('utf8');
socket.on('data', (data) => {
console.log(data);
});
socket.on('end', () => {
server.close();
});
Or
const tls = require('tls');
const fs = require('fs');
const options = {
pfx: fs.readFileSync('client.pfx')
};
const socket = tls.connect(8000, options, () => {
console.log('client connected',
socket.authorized ? 'authorized' : 'unauthorized');
process.stdin.pipe(socket);
process.stdin.resume();
});
socket.setEncoding('utf8');
socket.on('data', (data) => {
console.log(data);
});
socket.on('end', () => {
server.close();
});
tls.connect(path[, options][, callback])
新增于: v0.11.3
path
<string> Default value foroptions.path
.options
<Object> Seetls.connect()
.callback
<Function> Seetls.connect()
.
Same as tls.connect()
except that path
can be provided as an argument instead of an option.
Note: A path option, if specified, will take precedence over the path argument.
tls.connect(port[, host][, options][, callback])
新增于: v0.11.3
port
<number> Default value foroptions.port
.host
<string> Optional default value foroptions.host
.options
<Object> Seetls.connect()
.callback
<Function> Seetls.connect()
.
Same as tls.connect()
except that port
and host
can be provided as arguments instead of options.
Note: A port or host option, if specified, will take precedence over any port or host argument.
tls.createSecureContext(options)
版本历史
版本 | 变更 |
---|---|
v7.3.0 | If the key option is an array, individual entries do not need a passphrase property anymore. Array entries can also just be string s or Buffer s now. |
v5.2.0 | The ca option can now be a single string containing multiple CA certificates. |
v0.11.13 | 新增于: v0.11.13 |
options
<Object>pfx
<string> | <Buffer> Optional PFX or PKCS12 encoded private key and certificate chain.pfx
is an alternative to providingkey
andcert
individually. PFX is usually encrypted, if it is,passphrase
will be used to decrypt it.key
<string> | <string[]> | <Buffer> | <Buffer[]> | <Object[]> Optional private keys in PEM format. PEM allows the option of private keys being encrypted. Encrypted keys will be decrypted withoptions.passphrase
. Multiple keys using different algorithms can be provided either as an array of unencrypted key strings or buffers, or an array of objects in the form{pem:
. The object form can only occur in an array.
<string|buffer>[, passphrase: <string>]}object.passphrase
is optional. Encrypted keys will be decrypted withobject.passphrase
if provided, oroptions.passphrase
if it is not.passphrase
<string> Optional shared passphrase used for a single private key and/or a PFX.cert
<string> | <string[]> | <Buffer> | <Buffer[]> Optional cert chains in PEM format. One cert chain should be provided per private key. Each cert chain should consist of the PEM formatted certificate for a provided privatekey
, followed by the PEM formatted intermediate certificates (if any), in order, and not including the root CA (the root CA must be pre-known to the peer, seeca
). When providing multiple cert chains, they do not have to be in the same order as their private keys inkey
. If the intermediate certificates are not provided, the peer will not be able to validate the certificate, and the handshake will fail.ca
<string> | <string[]> | <Buffer> | <Buffer[]> Optionally override the trusted CA certificates. Default is to trust the well-known CAs curated by Mozilla. Mozilla's CAs are completely replaced when CAs are explicitly specified using this option. The value can be a string or Buffer, or an Array of strings and/or Buffers. Any string or Buffer can contain multiple PEM CAs concatenated together. The peer's certificate must be chainable to a CA trusted by the server for the connection to be authenticated. When using certificates that are not chainable to a well-known CA, the certificate's CA must be explicitly specified as a trusted or the connection will fail to authenticate. If the peer uses a certificate that doesn't match or chain to one of the default CAs, use theca
option to provide a CA certificate that the peer's certificate can match or chain to. For self-signed certificates, the certificate is its own CA, and must be provided.crl
<string> | <string[]> | <Buffer> | <Buffer[]> Optional PEM formatted CRLs (Certificate Revocation Lists).ciphers
<string> Optional cipher suite specification, replacing the default. For more information, see modifying the default cipher suite.honorCipherOrder
<boolean> Attempt to use the server's cipher suite preferences instead of the client's. Whentrue
, causesSSL_OP_CIPHER_SERVER_PREFERENCE
to be set insecureOptions
, see OpenSSL Options for more information.ecdhCurve
<string> A string describing a named curve to use for ECDH key agreement orfalse
to disable ECDH. Defaults totls.DEFAULT_ECDH_CURVE
. Usecrypto.getCurves()
to obtain a list of available curve names. On recent releases,openssl ecparam -list_curves
will also display the name and description of each available elliptic curve.dhparam
<string> | <Buffer> Diffie Hellman parameters, required for Perfect Forward Secrecy. Useopenssl dhparam
to create the parameters. The key length must be greater than or equal to 1024 bits, otherwise an error will be thrown. It is strongly recommended to use 2048 bits or larger for stronger security. If omitted or invalid, the parameters are silently discarded and DHE ciphers will not be available.secureProtocol
<string> Optional SSL method to use, default is"SSLv23_method"
. The possible values are listed as SSL_METHODS, use the function names as strings. For example,"SSLv3_method"
to force SSL version 3.secureOptions
<number> Optionally affect the OpenSSL protocol behavior, which is not usually necessary. This should be used carefully if at all! Value is a numeric bitmask of theSSL_OP_*
options from OpenSSL Options.sessionIdContext
<string> Optional opaque identifier used by servers to ensure session state is not shared between applications. Unused by clients.
Note:
tls.createServer()
sets the default value of thehonorCipherOrder
option totrue
, other APIs that create secure contexts leave it unset.tls.createServer()
uses a 128 bit truncated SHA1 hash value generated fromprocess.argv
as the default value of thesessionIdContext
option, other APIs that create secure contexts have no default value.
The tls.createSecureContext()
method creates a credentials object.
A key is required for ciphers that make use of certificates. Either key
or pfx
can be used to provide it.
If the 'ca' option is not given, then Node.js will use the default publicly trusted list of CAs as given in http://mxr.mozilla.org/mozilla/source/security/nss/lib/ckfw/builtins/certdata.txt.
tls.createServer([options][, secureConnectionListener])
版本历史
版本 | 变更 |
---|---|
v8.0.0 | The ALPNProtocols and NPNProtocols options can be Uint8Array s now. |
v5.0.0 | ALPN options are supported now. |
v0.3.2 | 新增于: v0.3.2 |
options
<Object>handshakeTimeout
<number> Abort the connection if the SSL/TLS handshake does not finish in the specified number of milliseconds. Defaults to120
seconds. A'tlsClientError'
is emitted on thetls.Server
object whenever a handshake times out.requestCert
<boolean> Iftrue
the server will request a certificate from clients that connect and attempt to verify that certificate. Defaults tofalse
.rejectUnauthorized
<boolean> If notfalse
the server will reject any connection which is not authorized with the list of supplied CAs. This option only has an effect ifrequestCert
istrue
. Defaults totrue
.NPNProtocols
<string[]> | <Buffer[]> | <Uint8Array[]> | <Buffer> | <Uint8Array> An array of strings,Buffer
s orUint8Array
s, or a singleBuffer
orUint8Array
containing supported NPN protocols.Buffer
s should have the format[len][name][len][name]...
e.g.0x05hello0x05world
, where the first byte is the length of the next protocol name. Passing an array is usually much simpler, e.g.['hello', 'world']
. (Protocols should be ordered by their priority.)ALPNProtocols
: <string[]> | <Buffer[]> | <Uint8Array[]> | <Buffer> | <Uint8Array> An array of strings,Buffer
s orUint8Array
s, or a singleBuffer
orUint8Array
containing the supported ALPN protocols.Buffer
s should have the format[len][name][len][name]...
e.g.0x05hello0x05world
, where the first byte is the length of the next protocol name. Passing an array is usually much simpler, e.g.['hello', 'world']
. (Protocols should be ordered by their priority.) When the server receives both NPN and ALPN extensions from the client, ALPN takes precedence over NPN and the server does not send an NPN extension to the client.SNICallback(servername, cb)
<Function> A function that will be called if the client supports SNI TLS extension. Two arguments will be passed when called:servername
andcb
.SNICallback
should invokecb(null, ctx)
, wherectx
is a SecureContext instance. (tls.createSecureContext(...)
can be used to get a proper SecureContext.) IfSNICallback
wasn't provided the default callback with high-level API will be used (see below).sessionTimeout
<number> An integer specifying the number of seconds after which the TLS session identifiers and TLS session tickets created by the server will time out. See SSL_CTX_set_timeout for more details.ticketKeys
: A 48-byteBuffer
instance consisting of a 16-byte prefix, a 16-byte HMAC key, and a 16-byte AES key. This can be used to accept TLS session tickets on multiple instances of the TLS server.- ...: Any
tls.createSecureContext()
options can be provided. For servers, the identity options (pfx
orkey
/cert
) are usually required.
secureConnectionListener
<Function>
Creates a new tls.Server. The secureConnectionListener
, if provided, is automatically set as a listener for the 'secureConnection'
event.
Note: The ticketKeys
options is automatically shared between cluster
module workers.
The following illustrates a simple echo server:
const tls = require('tls');
const fs = require('fs');
const options = {
key: fs.readFileSync('server-key.pem'),
cert: fs.readFileSync('server-cert.pem'),
// This is necessary only if using the client certificate authentication.
requestCert: true,
// This is necessary only if the client uses the self-signed certificate.
ca: [ fs.readFileSync('client-cert.pem') ]
};
const server = tls.createServer(options, (socket) => {
console.log('server connected',
socket.authorized ? 'authorized' : 'unauthorized');
socket.write('welcome!\n');
socket.setEncoding('utf8');
socket.pipe(socket);
});
server.listen(8000, () => {
console.log('server bound');
});
Or
const tls = require('tls');
const fs = require('fs');
const options = {
pfx: fs.readFileSync('server.pfx'),
// This is necessary only if using the client certificate authentication.
requestCert: true,
};
const server = tls.createServer(options, (socket) => {
console.log('server connected',
socket.authorized ? 'authorized' : 'unauthorized');
socket.write('welcome!\n');
socket.setEncoding('utf8');
socket.pipe(socket);
});
server.listen(8000, () => {
console.log('server bound');
});
This server can be tested by connecting to it using openssl s_client
:
openssl s_client -connect 127.0.0.1:8000
tls.getCiphers()
新增于: v0.10.2
Returns an array with the names of the supported SSL ciphers.
For example:
console.log(tls.getCiphers()); // ['AES128-SHA', 'AES256-SHA', ...]
tls.DEFAULT_ECDH_CURVE
新增于: v0.11.13
The default curve name to use for ECDH key agreement in a tls server. The default value is 'prime256v1'
(NIST P-256). Consult RFC 4492 and FIPS.186-4 for more details.
Deprecated APIs
Class: CryptoStream
新增于: v0.3.4废弃于: v0.11.3 Stability: 0 - Deprecated: Use tls.TLSSocket
instead.
The tls.CryptoStream
class represents a stream of encrypted data. This class has been deprecated and should no longer be used.
cryptoStream.bytesWritten
新增于: v0.3.4废弃于: v0.11.3
The cryptoStream.bytesWritten
property returns the total number of bytes written to the underlying socket including the bytes required for the implementation of the TLS protocol.
Class: SecurePair
新增于: v0.3.2废弃于: v0.11.3 Stability: 0 - Deprecated: Use tls.TLSSocket
instead.
Returned by tls.createSecurePair()
.
Event: 'secure'
新增于: v0.3.2废弃于: v0.11.3
The 'secure'
event is emitted by the SecurePair
object once a secure connection has been established.
As with checking for the server secureConnection
event, pair.cleartext.authorized
should be inspected to confirm whether the certificate used is properly authorized.
tls.createSecurePair([context][, isServer][, requestCert][, rejectUnauthorized][, options])
版本历史
版本 | 变更 |
---|---|
v5.0.0 | ALPN options are supported now. |
v0.11.3 | 废弃于: v0.11.3 |
v0.3.2 | 新增于: v0.3.2 |
Stability: 0 - Deprecated: Use tls.TLSSocket
instead.
context
<Object> A secure context object as returned bytls.createSecureContext()
isServer
<boolean>true
to specify that this TLS connection should be opened as a server.requestCert
<boolean>true
to specify whether a server should request a certificate from a connecting client. Only applies whenisServer
istrue
.rejectUnauthorized
<boolean> If notfalse
a server automatically reject clients with invalid certificates. Only applies whenisServer
istrue
.options
secureContext
: An optional TLS context object fromtls.createSecureContext()
isServer
: Iftrue
the TLS socket will be instantiated in server-mode. Defaults tofalse
.server
<net.Server> An optionalnet.Server
instancerequestCert
: Optional, seetls.createServer()
rejectUnauthorized
: Optional, seetls.createServer()
NPNProtocols
: Optional, seetls.createServer()
ALPNProtocols
: Optional, seetls.createServer()
SNICallback
: Optional, seetls.createServer()
session
<Buffer> An optionalBuffer
instance containing a TLS session.requestOCSP
<boolean> Iftrue
, specifies that the OCSP status request extension will be added to the client hello and an'OCSPResponse'
event will be emitted on the socket before establishing a secure communication
Creates a new secure pair object with two streams, one of which reads and writes the encrypted data and the other of which reads and writes the cleartext data. Generally, the encrypted stream is piped to/from an incoming encrypted data stream and the cleartext one is used as a replacement for the initial encrypted stream.
tls.createSecurePair()
returns a tls.SecurePair
object with cleartext
and encrypted
stream properties.
Note: cleartext
has the same API as tls.TLSSocket
.
Note: The tls.createSecurePair()
method is now deprecated in favor of tls.TLSSocket()
. For example, the code:
pair = tls.createSecurePair(/* ... */);
pair.encrypted.pipe(socket);
socket.pipe(pair.encrypted);
can be replaced by:
secure_socket = tls.TLSSocket(socket, options);
where secure_socket
has the same API as pair.cleartext
.