双指针 - 四数组问题[M]
优质
小牛编辑
140浏览
2023-12-01
018. 4Sum
问题
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0.
A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)
思路
好了,2SUM,3SUM,3SUM Closet 都解决了,我们顺利迎来了最后一个boss,4SUM,但是我们已经见怪不怪了。老思路,把4SUM问题变成3SUM问题。
- 先排序
- 确定一个数,然后文件顺利变成3SUM问题,然后就是完完全全3SUM的解决思路了。
for(int i = 0;i < nums.length-3;i++)
{
int target_i = target - nums[i];
if(i > 0 && nums[i] == nums[i-1]) //排除一样的数
continue;
……//3SUM问题
}
整体代码
public class Solution {
public List<List<Integer>> fourSum(int[] nums, int target) {
Arrays.sort(nums);
List<List<Integer>> list;
list = new ArrayList<List<Integer>>();
int mid,right;
for(int i = 0;i < nums.length-3;i++)
{
int target_i = target - nums[i];
if(i > 0 && nums[i] == nums[i-1])
continue;
for (int left = i+1; left < nums.length-2; left++)
{
mid = left+1;
right = nums.length-1;
int tmp = target_i-nums[left];
if(left > i+1 && nums[left] == nums[left-1])
continue;
while(mid < right)
{
if(nums[mid] + nums[right] == tmp)
{
int tmp_mid = nums[mid],tmp_right= nums[right];
list.add(Arrays.asList(nums[i],nums[left], nums[mid], nums[right]));
while(mid < right && nums[++mid] == tmp_mid);
while(mid < right && nums[--right] == tmp_right);
}
else if(nums[mid] + nums[right] < tmp)
mid++;
else
right--;
}
}
}
return list;
}
}
思路2:排除不可能情况
讨论区rikimberley有个高分的答案,具体思路还是和上面的思路一样的,但是它的运行速度超过了100%的人,是因为它在运行的时候,排除了很多不可能的情况。假设我们考虑4个数分别为A B C D(有序),最大值MAX。
- A太大,退出:(如果4*A > target)
- A太小,跳过:(A+4*MAx < target)
- 确定A后求BCD的3SUM问题
- B太大,退出:(如果3*B > target)
- B太小,跳过:(B+3*MAx < target)
……
public List<List<Integer>> fourSum(int[] nums, int target) {
ArrayList<List<Integer>> res = new ArrayList<List<Integer>>();
int len = nums.length;
if (nums == null || len < 4)
return res;
Arrays.sort(nums);
int max = nums[len - 1];
if (4 * nums[0] > target || 4 * max < target)
return res;
int i, z;
for (i = 0; i < len; i++) {
z = nums[i];
if (i > 0 && z == nums[i - 1])// avoid duplicate
continue;
if (z + 3 * max < target) // z is too small
continue;
if (4 * z > target) // z is too large
break;
if (4 * z == target) { // z is the boundary
if (i + 3 < len && nums[i + 3] == z)
res.add(Arrays.asList(z, z, z, z));
break;
}
threeSumForFourSum(nums, target - z, i + 1, len - 1, res, z);
}
return res;
}
/*
* Find all possible distinguished three numbers adding up to the target
* in sorted array nums[] between indices low and high. If there are,
* add all of them into the ArrayList fourSumList, using
* fourSumList.add(Arrays.asList(z1, the three numbers))
*/
public void threeSumForFourSum(int[] nums, int target, int low, int high, ArrayList<List<Integer>> fourSumList,
int z1) {
if (low + 1 >= high)
return;
int max = nums[high];
if (3 * nums[low] > target || 3 * max < target)
return;
int i, z;
for (i = low; i < high - 1; i++) {
z = nums[i];
if (i > low && z == nums[i - 1]) // avoid duplicate
continue;
if (z + 2 * max < target) // z is too small
continue;
if (3 * z > target) // z is too large
break;
if (3 * z == target) { // z is the boundary
if (i + 1 < high && nums[i + 2] == z)
fourSumList.add(Arrays.asList(z1, z, z, z));
break;
}
twoSumForFourSum(nums, target - z, i + 1, high, fourSumList, z1, z);
}
}
/*
* Find all possible distinguished two numbers adding up to the target
* in sorted array nums[] between indices low and high. If there are,
* add all of them into the ArrayList fourSumList, using
* fourSumList.add(Arrays.asList(z1, z2, the two numbers))
*/
public void twoSumForFourSum(int[] nums, int target, int low, int high, ArrayList<List<Integer>> fourSumList,
int z1, int z2) {
if (low >= high)
return;
if (2 * nums[low] > target || 2 * nums[high] < target)
return;
int i = low, j = high, sum, x;
while (i < j) {
sum = nums[i] + nums[j];
if (sum == target) {
fourSumList.add(Arrays.asList(z1, z2, nums[i], nums[j]));
x = nums[i];
while (++i < j && x == nums[i]) // avoid duplicate
;
x = nums[j];
while (i < --j && x == nums[j]) // avoid duplicate
;
}
if (sum < target)
i++;
if (sum > target)
j--;
}
return;
}