examples.elementtree.adjacency_list
优质
小牛编辑
132浏览
2023-12-01
""" Illustrates an explicit way to persist an XML document expressed using ElementTree. Each DOM node is stored in an individual table row, with attributes represented in a separate table. The nodes are associated in a hierarchy using an adjacency list structure. A query function is introduced which can search for nodes along any path with a given structure of attributes, basically a (very narrow) subset of xpath. This example explicitly marshals/unmarshals the ElementTree document into mapped entities which have their own tables. Compare to pickle_type.py which uses PickleType to accomplish the same task. Note that the usage of both styles of persistence are identical, as is the structure of the main Document class. """ # PART I - Imports/Configuration from __future__ import print_function import os import re from xml.etree import ElementTree from sqlalchemy import and_ from sqlalchemy import Column from sqlalchemy import create_engine from sqlalchemy import ForeignKey from sqlalchemy import Integer from sqlalchemy import String from sqlalchemy import Table from sqlalchemy import Unicode from sqlalchemy.orm import aliased from sqlalchemy.orm import lazyload from sqlalchemy.orm import mapper from sqlalchemy.orm import registry from sqlalchemy.orm import relationship from sqlalchemy.orm import Session e = create_engine("sqlite://") mapper_registry = registry() # PART II - Table Metadata # stores a top level record of an XML document. documents = Table( "documents", mapper_registry.metadata, Column("document_id", Integer, primary_key=True), Column("filename", String(30), unique=True), Column("element_id", Integer, ForeignKey("elements.element_id")), ) # stores XML nodes in an adjacency list model. This corresponds to # Element and SubElement objects. elements = Table( "elements", mapper_registry.metadata, Column("element_id", Integer, primary_key=True), Column("parent_id", Integer, ForeignKey("elements.element_id")), Column("tag", Unicode(30), nullable=False), Column("text", Unicode), Column("tail", Unicode), ) # stores attributes. This corresponds to the dictionary of attributes # stored by an Element or SubElement. attributes = Table( "attributes", mapper_registry.metadata, Column( "element_id", Integer, ForeignKey("elements.element_id"), primary_key=True, ), Column("name", Unicode(100), nullable=False, primary_key=True), Column("value", Unicode(255)), ) mapper_registry.metadata.create_all(e) # PART III - Model # our document class. contains a string name, # and the ElementTree root element. class Document(object): def __init__(self, name, element): self.filename = name self.element = element # PART IV - Persistence Mapping # Node class. a non-public class which will represent the DB-persisted # Element/SubElement object. We cannot create mappers for ElementTree elements # directly because they are at the very least not new-style classes, and also # may be backed by native implementations. so here we construct an adapter. class _Node(object): pass # Attribute class. also internal, this will represent the key/value attributes # stored for a particular Node. class _Attribute(object): def __init__(self, name, value): self.name = name self.value = value # setup mappers. Document will eagerly load a list of _Node objects. mapper( Document, documents, properties={"_root": relationship(_Node, lazy="joined", cascade="all")}, ) mapper( _Node, elements, properties={ "children": relationship(_Node, cascade="all"), # eagerly load attributes "attributes": relationship( _Attribute, lazy="joined", cascade="all, delete-orphan" ), }, ) mapper(_Attribute, attributes) # define marshalling functions that convert from _Node/_Attribute to/from # ElementTree objects. this will set the ElementTree element as # "document._element", and append the root _Node object to the "_root" mapped # collection. class ElementTreeMarshal(object): def __get__(self, document, owner): if document is None: return self if hasattr(document, "_element"): return document._element def traverse(node, parent=None): if parent is not None: elem = ElementTree.SubElement(parent, node.tag) else: elem = ElementTree.Element(node.tag) elem.text = node.text elem.tail = node.tail for attr in node.attributes: elem.attrib[attr.name] = attr.value for child in node.children: traverse(child, parent=elem) return elem document._element = ElementTree.ElementTree(traverse(document._root)) return document._element def __set__(self, document, element): def traverse(node): n = _Node() n.tag = str(node.tag) n.text = str(node.text) n.tail = str(node.tail) if node.tail else None n.children = [traverse(n2) for n2 in node] n.attributes = [ _Attribute(str(k), str(v)) for k, v in node.attrib.items() ] return n document._root = traverse(element.getroot()) document._element = element def __delete__(self, document): del document._element document._root = [] # override Document's "element" attribute with the marshaller. Document.element = ElementTreeMarshal() # PART V - Basic Persistence Example line = "\n--------------------------------------------------------" # save to DB session = Session(e) # get ElementTree documents for file in ("test.xml", "test2.xml", "test3.xml"): filename = os.path.join(os.path.dirname(__file__), file) doc = ElementTree.parse(filename) session.add(Document(file, doc)) print("\nSaving three documents...", line) session.commit() print("Done.") print("\nFull text of document 'text.xml':", line) document = session.query(Document).filter_by(filename="test.xml").first() ElementTree.dump(document.element) # PART VI - Searching for Paths # manually search for a document which contains "/somefile/header/field1:hi" root = aliased(_Node) child_node = aliased(_Node) grandchild_node = aliased(_Node) d = ( session.query(Document) .join(Document._root.of_type(root)) .filter(root.tag == "somefile") .join(root.children.of_type(child_node)) .filter(child_node.tag == "header") .join(child_node.children.of_type(grandchild_node)) .filter( and_(grandchild_node.tag == "field1", grandchild_node.text == "hi") ) .one() ) ElementTree.dump(d.element) # generalize the above approach into an extremely impoverished xpath function: def find_document(path, compareto): query = session.query(Document) attribute = Document._root for i, match in enumerate( re.finditer(r"/([\w_]+)(?:\[@([\w_]+)(?:=(.*))?\])?", path) ): (token, attrname, attrvalue) = match.group(1, 2, 3) target_node = aliased(_Node) query = query.join(attribute.of_type(target_node)).filter( target_node.tag == token ) attribute = target_node.children if attrname: attribute_entity = aliased(_Attribute) if attrvalue: query = query.join( target_node.attributes.of_type(attribute_entity) ).filter( and_( attribute_entity.name == attrname, attribute_entity.value == attrvalue, ) ) else: query = query.join( target_node.attributes.of_type(attribute_entity) ).filter(attribute_entity.name == attrname) return ( query.options(lazyload(Document._root)) .filter(target_node.text == compareto) .all() ) for path, compareto in ( ("/somefile/header/field1", "hi"), ("/somefile/field1", "hi"), ("/somefile/header/field2", "there"), ("/somefile/header/field2[@attr=foo]", "there"), ): print("\nDocuments containing '%s=%s':" % (path, compareto), line) print([d.filename for d in find_document(path, compareto)])