8月23一面: 自我介绍 手撕两道代码(最长公共子序列) 8月24二面: 自我介绍 coding:给定字符串,给定一个词典(词典元素可以重复使用),问字符串是否可以由词典中元素组成 问项目,评价指标,没有上线如何进行模拟上线的检测 8月25三面 自我介绍 问了论文、问了一个项目 问了Transformer的结构,相较于LSTM、CNN的优势 机器学习内容: GDBT、RF、bagging、boos
1.1、什么是K近邻算法 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居。为何要找邻居?打个比方来说,假设你来到一个陌生的村庄,现在你要找到与你有着相似特征的人群融入他们,所谓入伙。 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的
UAVCAN 是一种板载网络,允许自驾仪通过该协议连接各类航空电子仪器,其支持的硬件有: 电机控制器 Pixhawk ESC SV2740 ESC 空速管传感器 Thiemar 空速管 GPS和GLONASS的GNSS接收器 Zubax GNSS 相较于爱好级设备而言,UAVCAN使用坚固的差分信号,并通过总线支持固件升级。所有电机控制器ESC均能提供反馈(数值式信号并直接控制电机转速)和转子磁通
来源:http://www.infoq.com/cn/news/2015/09/Python 随着科技的发展,拥有高容量、高速度和多样性的大数据已经成为当今时代的主题词。数据科学领域中所采用的机器学习编程语言大相径庭。究竟哪种语言最适合机器学习成为争论不休的话题。近日,密西根州立大学的博士生Sebastian Raschka再次发起了机器学习编程语言之争,分析了自己选择Python的原因。 目前,
2.2.2 32位微机的内存管理模式 32位微机的内存存管理仍然采用“分段”的管理模式,存储器的逻辑地址同样由段地址和偏移量两部分组成。32位微机的内存管理与16位微机的有相同之处,也有不同之处,因为它提供了两种不同工作方式:实方式和保护方式。 1、物理地址的计算方式 实方式:段地址仍然是16的倍数,每个段的最大容量仍为64K。段寄存器的值是段的起始地址,存储单元的物理地址仍为段寄存器的值乘16,
2.2 存储器的管理模式 Intel公司的80X86系列的CPU基本上采用内存分段的管理模式。它把内存和程序分成若干个段,每个段的起点用一个段寄存器来记忆,所以,学习微机汇编语言,必须要清楚地理解存储器的分段含义、存储单元的逻辑地址和其物理地址之间的转换关系。 2.2.1 16位微机的内存管理模式 1、存储器的分段 我们知道:计算机的内存单元是以“字节”为最小单位进行线性编址的。为了标识每个存储单
今天人工智能领域的研究者,几乎无人不谈深度学习。很多人甚至高喊出了「深度学习 = 人工智能」的口号。毋庸讳言,深度学习绝对不是人工智能领域的唯一解决方案,二者之间也无法画上等号。但说深度学习是当今乃至未来很长一段时间内引领人工智能发展的核心技术,则一点儿也不为过。
岗位:机器学习/数据挖掘/自然语言处理工程师 面试体验:第一个面的公司,很紧张,也是被拷打的最狠的一次 一面 8/23 70分钟 1. 自我介绍 2. 实习拷打 推荐算法中的相关模型和前沿理论 是否有读过最近的期刊上的文章,做一些介绍 3. 科研拷打 如何做的模型 其中的系数如何确定 4. NLP拷打 Attention介绍 QKV是什么,举例说一下 Tranformer的encoder和deco
快手机器学习算法工程师一面50min 人生中第一次找工作面试😭 (面试官姐姐人超好😭,一直心平气和的和聊天一样,我说错了也没说我而是跟我解答,甚至帮我找理由,全程都很耐心) 1.自我介绍 2.介绍用过哪些机器学习方法 3.SVM的原理跟优势 4.集成学习(扯了下随机森林跟集成学习原理),XGBOOST(没用过) 5.knn和kmeans做分类的原理 6.你们做的遥感图像怎么提取特征 7.问了下
百度2024秋招机器学习一面面经 岗位:机器学习/数据挖掘/NLP-T联合 部门:百度地图 地点:北京 一面 自我介绍 对项目和实习的大概询问,没有去深挖,只是对一些问题进行询问 询问对大模型的了解,讲了 RLHF 的原理 RLHF是一种新的训练范式,通过使用强化学习方式根据人类反馈来优化语言模型。一共包括三个步骤: 预训练一个语言模型(LM) 收集数据并训练奖励模型 (Reward Model,
11月27日 首先自我介绍,大致说了一下自己硕士阶段的项目工作。项目用的是高德地图数据😂,面试官好像并不在意这个。 从项目中提的问题: 1数据处理工作包含的内容 2交通异常检测任务细节 3超图的概念,为什么要用超图 4论文中自己算法的指标有多高(自己记不清了,翻了一下手机,被笑话,说这样会让人怀疑不是自己做的) 5Lstm原理,优缺点(我不太清楚优缺点,但是回答了比RNN的优势) 开放性问题:
9.7一面 (50min) 自我介绍 项目比赛提问,问具体的细节 GRU与LSTM的区别 GBDT的原理 XGBoost和LightGBM与GBDT的区别 BN在训练和测试阶段的区别?BN在训练时是如何更新参数的? 手撕算法题: 在一个m*n的矩阵里,一个机器人初始在x,y点,并且每次只能向相邻的上下左右四个方向移动一步,那么在最多移动k次情况下,一共有多少条路径可以逃出矩阵? 输入5个参数:m,
中秋节前一天 一面(初试) 30分钟 没开摄像头,是在京东的会议平台上面的 深挖简历,主要问了项目与竞赛 八股文集中于大数据方面:spark与map reduce之间的差别、spark与flink区别、flink水位线等,有些问题不记得了,但基本都答上来了 没有手撕 反问:业务、匹配程度 ------------------------ 已挂 #京东##算法工程师#
8.2 测评 8.26 一面 所有项目逐个介绍(细挖) ResNet中的BottleNeck结构 9.7 HR面 自我介绍 项目介绍 家庭情况 父母对自己工作的期望 研究所和企业工作的选择 职业规划 对象问题 读研期间导师对自己的影响 自己的性格介绍 自己的缺点 薪资意向 岗位的理解 反问 9.28 录用评估 #海康面试#
8.18 测评 9.6 一面 项目1介绍 逻辑回归简介 极大似然法简介 反问 KPI面...面完了面试官说他们是做加密的,不懂为什么让我面... #小米面试#